УДК 582.287.238:57.082.26

АПРОБАЦИЯ ПИТАТЕЛЬНЫХ СРЕД НА ОСНОВЕ КОРНЕПЛОДОВ ДЛЯ ГЛУБИННОГО КУЛЬТИВИРОВАНИЯ ВЕШЕНКИ ОБЫКНОВЕННОЙ

А.С. Чугай, Е.С. Гришан, Н.С. Коломацкая, 5 курс Научный руководитель — Е.О. Юрченко, доцент Полесский государственный университет

Вешенка обыкновенная, или устричная [*Pleurotus ostreatus* (Jacq.) Р. Китт.] — это съедобный гриб с хорошими пищевыми качествами, стоящий по объемам культивирования в ряде стран на втором месте после шампиньона двуспорового. Первые эксперименты по выращиванию гриба в асептических условиях на отрезках древесины относятся к началу XX века [1]. О возможности выращивания монокультуры мицелия *P. ostreatus* в глубинных условиях, т.е. в жидкой питательной среде при перемешивании, впервые сообщается в 1948 г. [2].

По всей видимости, дикорастущая вешенка *P. ostreatus*, как и другие виды рода, употребляются в пищу белорусами с давних времен, хотя собираются населением редко [3, с. 75]. В Беларуси, наряду с асептическим массовым производством плодовых тел вешенки [4] в последние 20 лет ведутся исследования в области глубинной культуры этого гриба как потенциального источника биологически активных и других полезных веществ. В частности, было установлено, что мицелий *P. ostreatus* из глубинной культуры отличается от плодовых тел повышенным содержанием водорастворимых полисахаридов и липидов [5]. Удобство глубинной культуры состоит в более простой технике отделения как мицелия, так и полезных продуктов метаболизма, выделяемых грибом вовне. Токсикологические исследования экстрактов *P. ostreatus* показывают их полную безопасность [6].

Применение растительных отваров в средах для вешенки является достаточно традиционным биотехнологическим приемом [7, с. 97], однако из-за огромного разнообразия растительного сырья немногие его виды были апробированы для приготовления сред. **Целью** работы являлся поиск жидких питательных сред на основе недорого и доступного сырья, в которых вешенка обыкновенная демонстрирует наибольшую урожайность.

Материал и методы исследования. Был использован дикий штамм *P. ostreatus*, выделенный в 2014 г. из плодовых тел, растущих на тополе в г. Минске. Для приготовления питательных сред навеску сырья при необходимости нарезали ломтиками толщиной 3–4 мм (корнеплоды предварительно очищали), варили под крышкой в кипящей воде 20 мин, отфильтровывали отвар, доливали его водой до недостающего рассчетного объема, разливали по колбам и стерилизовали в автоклаве 40 мин при 112°С. Для сред использовалась водопроводная вода. Для картофельной среды использовали картофель сорта Скарб. Применялась пищевая сахароза ГОСТ 21-94. Инокулюм брали в виде фрагментов ковра мицелия площадью 1 см², вырезаемых вместе с тонким слоем среды (около 1 мм толщиной) из маточной культуры на картофельно-сахарозном агаре (200 г/л картофельного отвара, 20 г/л сахарозы, 1.5% агар-агара). Культивирование велось в течение 2-х недель в стеклянных колбах объемом 500 и 250 мл, под ватно-марлевыми пробками, на качалке (70 об./мин), в темноте, при средней температуре 28°С, в 3-х повторностях. Колбы наполнялись 200 и 75 мл среды соответственно их размеру. По окончанию инкубации биомасса гриба из каждой повторности отмывалась от среды, взвешивалась во влажном и сухом состоянии. Мицелий

собирался также со стенок колб. Обезвоживание мицелия производили в сушильном шкафу при 35°C до твердого состояния (до полной потери гибкости склеившейся гифальной массой).

Результаты и их обсуждение. Урожайность *P. ostreatus* в разных вариантах питательных сред показана в таблице 1. Было замечено, что концентрирование сред (использование в 1.5–2 раза большей навески корнеплода) может не давать существенной прибавки урожая. При масштабировании объема среды с 75 до 200 мл урожай биомассы несколько снижается, что, по всей видимости, связано с лучшей аэрацией культуры в меньшем объеме.

Таблица 1 – Характеристики прироста вешенки в глубинной культуре

№ среды	Состав среды	Средняя температура инкубации,	Объем среды, мл		прования, реднее)	
		°C	-	Сырая	Сухая	
1	Картофельно-сахарозная (200 г/л картофеля, 20 г/л сахарозы)	29.6	75	_	2.8	
		29.6	200	_	2.5	
		27.7	75	201	6.7	
		27.7	200	164	5.65	
	Картофельно-сахарозная	29.6	200	_	8.4	
2	(400 г/л картофеля,	27.7	200	276	14.75	
	30 г/л сахарозы)	28.5	200	156	9.9	
3	Картофельно-сахарозная (600 г/л картофеля, 40 г/л сахарозы)	27.7	200	272	13.7	
4	Картофельно-сахарозная (700 г/л картофеля, 50 г/л сахарозы)	28.5	200	195	15.1	
5	Картофельно-сахарозная (200 г/л картофельных очисток, 20 г/л сахарозы)	28.5	75	130	6.7	
6	Морковная (200 г/л моркови)	28.5	200	92	2.85	
7	Свекольная (сахарная свекла 200 г/л)	27.2	200	53	2.1	
8	Свекольная	27.2	75	195 130 92	7.7	
0	(сахарная свекла 400 г/л)	27.2	200	35	2.0	
9	Картофельно-свекольная (сахарная свекла 100 г/л, картофель 100 г/л, сахароза 10 г/л)	27.3	200	53	1.8	
10	Картофельно-свекольная (сахарная свекла 200 г/л, картофель 200 г/л, сахароза 20 г/л)	27.3	200	121	3.2	

Во всех вариантах наших экспериментов наблюдался рост гриба только в виде шариков (клубочков). Это обычное явление для глубинной культуры многих видов грибов [8, с. 230]. На средах 1 и 2 шарики были по преимуществу плотные и покрытые мелкими бугорками. На средах 3, 4, 7, 8 шарики были рыхлые, покрытые лучистыми выростами. Как правило, развивались 1–2 крупных шарика, происходящие из инокулюма. В процессе роста образовывались вторичные, мелкие шарики: они были наиболее многочисленны в картофельно-сахарозной среде и малочисленны или отсутствовали в средах, содержащих отвар сахарной свеклы (таблица 2). Выросшие в ходе двухнедельной инкубации культуры нельзя считать гомогенными по причине формирования плотных шариков (диффузия кислорода и питательных веществ внутрь которых может быть затруднена) и,

кроме того, из-за нарастания мицелия на стенки сосуда над уровнем питательной среды. Последнее явление отмечалось для *P. ostreatus* другими авторами [8, с. 258].

Таблица 2 – Характер глубинного роста вешенки в различных питательных средах и разных объемах среды

№ среды,	Количество шариков мицелия				
объем (мл)	по классам диаметра (см)				
OOBCM (MJI)	1.5–4	0.7–1.3	0.2-0.5		
1 (75)	1–2	1	2–3		
1 (200)	1–3	6–9	15–40		
2 (75)	1–3	6–12	12–50		
2 (200)	2–5	2–14	20-110		
3 (200)	3–6	8–20	30–40		
4 (200)	1	4–9	20-50		
5 (75)	1–2	6–7	30–60		
6 (200)	1–2	20–25	60–65		
7 (200)	1–2	0–1	0–5		
8 (75)	1	1	0–5		
8 (200)	1–3	0–3	0		
9 (200)	1	0–2	1–13		
10 (200)	1	0–6	1–40		

Выводы. Из протестированных питательных сред наибольший урожай мицелия вешенки наблюдался на картофельно-сахарозной среде (картофель от 400 до 700 г/л). Примененная шей-керная культура дает до 15 г/л сухого вещества гриба. На втором месте находятся среда из кожуры картофельных клубней (200 г/л) и сахарозы, и среда на основе отвара корнеплодов сахарной свеклы (400 г/л), при условии культивирования в объеме 75 мл. Максимальные показатели урожая отвечают требования к грибам-продуцентам — свыше 10 г/л по сухой массе [9]. В питательных средах на основе корнеплодов (картофель, сахарная свекла, морковь) у вешенки наблюдается сферический рост вегетативного тела. Образование вторичных (более мелких) шариков и их количество зависит от растительной основы среды, и в особенности стимулируется картофельным отваром.

Список использованных источников

- 1. Falck, R. Über die Waldkultur des Austernpilzes (*Agaricus ostreatus*) auf frischen Laubholzstubben / R. Falck // Zeitschrift für Forst- und Jagdwesen. 1917. Bd. 19. S. 159–165.
- 2. Szuecs, J. Method of growing mushroom mycelium and the resulting products / J. Szuecs. Patent US2850841. Patented Sept. 9, 1958. Application April 19, 1948.
- 3. Купрэвіч, В.Ф. Шкодныя, атрутныя і страўныя грыбы, адшуканыя ў Смалявіцкім раёне / В.Ф. Купрэвіч // Савецкая краіна. 1931. № 2(4). С. 64—78.
- 4. Трухоновец, В.В. Эколого-биологические особенности вешенки обыкновенной (*Pleurotus ostreatus* (Jacq.: Fr.) Китт.) и ее культивирование в Белоруссии. Автореф. дисс. ... канд. с.-х. наук. Гомель, 1992. 20 с.
- 5. Бабицкая, В.Г. Ксилотрофный базидиомицет *Pleurotus ostreatus* (Jacq.: Fr.) Киmm. продуцент биологически активных веществ / В.Г. Бабицкая, Т.А. Пучкова, В.В. Щерба, О.В. Осадчая // Вестник Фонда фундаментальных исследований (Минск). 2005. № 4(34). С. 40–49.
- 6. Deepalakshmi, K. Toxicological assessment of *Pleurotus ostreatus* in Sprague Dawley rats / K. Deepalakshmi, S. Mirunalini // Int. J. Nutrition, Pharmacology, Neurological Diseases. 2014. Vol. 4, issue 3. P. 139–145.
- 7. Бухало, А.С. Высшие съедобные базидиомицеты в чистой культуре / А.С. Бухало. К.: Наук. думка, 1988. 144 с. + 32 табл.
- 8. Бисько, Н.А. Высшие съедобные базидиомицеты в поверхностной и глубинной культуре / Н.А. Бисько, А.С. Бухало, С.П. Вассер [и др.]; под ред. И.А. Дудки. К.: Наук. думка, 1983. 312 с.
- 9. Solomons, G.L. Submerged culture production of mycelial biomass / G.L. Solomons. In: J.E. Smith, D.R. Berry (eds). The filamentous fungi. Vol. 1. London: Edward Arnold, 1975. P. 249–264.