Society Proceedings

Abstracts of the 17th European Congress of Clinical Neurophysiology

Warsaw, Poland, 5-8 June 2019

Organised by

Polish Society of Clinical Neurophysiology Prof. Maria EJMA, President, and Chair of the Local Organising Committee

Europe-Middle East-Africa Chapter (EMEAC) of the International Federation of Clinical Neurophysiology (IFCN) Prof. Jonathan COLE, Chair of the EMEAC-IFCN Chapter Assoc. Prof. Hatice TANKISI, Secretary/Treasurer of the EMEAC-IFCN Chapter

P51-T

A new approach to the radial nerve conduction block determination in the upper arm

Vasily Khodulev¹, Sviatlana Vlasava²

¹Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus, ²Polessky State University, Pinsk, Belarus

<u>Background:</u>There are technical limitations in the radial nerve studies in the upper arm using surface electrodes. One of the limitations is that stimulation at the axilla and Erb's point stimulates the entire brachial plexus along with the radial nerve.

<u>Material and Methods</u>: Twenty-one healthy volunteers, 55 patients with compressive neuropathies of the radial nerve in the spiral groove and 22 patients with complete radial nerve injuries were studied. Control group (65 radial nerves) consisted of healthy subjects and patients with the undamaged side. Stimulation was carried out at: (1) the distal part of lateral brachium (distal point); (2) Erb's point (proximal point); (3) the middle part of medial brachium – median and ulnar nerves (additional point). CMAP area recorded from the extensor digitorum was analyzed. Conduction block (CB) in percentage was calculated using the formula: ((distal CMAP + additional CMAP) – proximal CMAP)) x 100 / (distal CMAP + additional CMAP).

<u>Results:</u> In control group and patients with complete nerve injury CB was not registered ($4.2 \pm 9.8\%$ and $-1.7 \pm 11.7\%$ respectively), whereas in patients with compressive radial nerve neuropathy CB was $61.2 \pm 11.2\%$ (P < 0.001). In patients with the radial nerve complete injury, the proximal CMAP did not differ from the additional CMAP. Conduction velocity in the control group did not differ from that found in neuropathies.

<u>Conclusion:</u> Median and ulnar nerves stimulation in the middle part of medial brachium is recommended as an additional brachium diagnostic point for radial nerve CB determination.

European Congress of Clinical Neurophysiology

Final Programme

Table of contents

Welcome letter			Page 3
Committees and Organisers			Page 4
Information for authors		Page 6	
Accreditation			Page 11
Programme-at-a-glance			Page 12
Scientific programme		Page 20	
	Wednesday, 5 June		Page 20
	Thursday, 6 June		Page 27
	Friday, 7 June		Page 35
	Saturday, 8 June		Page 41
Plenary speakers' abstracts		Page 45	
Posters		Page 55	
Index of authors		Page 88	
City map		Page 108	
Venue floor-plan		Page 110	
General information		Page 112	
Sponsors and exhibitors		Page 118	
Patrons		Page 120	
Satellite Symposium		Page 121	

P49-T | Human HCN channel function: implications for disease symptomatology. Nahida Begum^{1,5}, Amy Winder^{3,4}, Ollie Marmoy^{1,2,3}, <u>Christopher Moore¹</u>

¹Queen Alexandra Hospital, Portsmouth, United Kingdom, ²Great Ormond Street Hospital, London, UK, ³Aston University, Birmingham, UK, ⁴Royal Victoria Hospital, Newcastle, UK, ⁵University of Southampton, Southampton, UK

P50-T | Changes in peripheral nerve excitability by transcutaneous direct currents in healthy subjects - pilot study

Andre Caetano^{1,2}, Mariana Pereira¹, Mamede de Carvalho^{1,3}

¹Institute of Physiology, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisboa, Portugal, ²Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal, ³Department of Neurosciences, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisboa, Portugal

Nerve conduction studies-Ultrasonography

Chair: Jean-Philippe Camdessanche (Saint-Étienne, France)

P51-T | A new approach to the radial nerve conduction block determination in the upper arm <u>Vasily Khodulev¹</u>, Sviatlana Vlasava²

¹Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus, ²Polessky State University, Pinsk, Belarus

P52-T | Comparison of two variants of the ring-finger test for diagnosing very mild carpal tunnel syndrome

<u>Daniel Gregor Schulze^{1,2,3}</u>, Karl Christian Nordby⁶, Milada Cvancarova Smastuen^{4,5}, Thomas Clemm⁶, Margreth Grotle^{3,5}, John Anker Zwart^{1,2,3}, Kristian Bernhard Nilsen^{1,3,7} ¹Institute of clinical medicine, faculty of medicine, University of Oslo, Norway, ²Department of neurology, Oslo University Hospital, Norway, ³Research and communication unit for musculoskeletal Health, Oslo University Hospital, Norway, ⁴Institue of Basic Medical Sciences, University of Oslo, Norway ⁶Oslo and Akershus University College, Oslo, Norway, ⁶National Institue of occupational Health, Oslo, Norway, ⁷Department of Neuromedicine and movement science, Norwegian University of Science and Technology, Trondheim, Norway

P53-T | Evaluation of atypical chronic autoimmune inflammatory polyneuropathies - clinical and neurophysiological comparison. <u>Marija Mihailova¹</u>, Janis Mednieks¹ ¹Pauls Stradins CUH, Riga, Latvia

P54-T | Peripheral neuropathy and immunological profile of patients with primary Sjögren syndrome

Joanna Perzyńska-Mazan¹, Maria Maślińska¹, Associate Robert Gasik¹ ¹National Institute Of Geriatrics, Rheumatology And Rehabilitation, Warsaw, Poland

P55-T | Does sensory conduction block work in CIDP? --Based on serial electrophysiological studies

<u>Hongfei Tai</u>¹, Hua Pan¹, Shuo Yang¹, Na Chen¹, Lei Zhang¹, Ying Wang¹, Fan Jian¹, Songtao Niu¹, Xingao Wang¹, Zaiqiang Zhang¹, Yongjun Wang¹, Kimura Jun²

¹Department of Neurology. Beijing Tiantan Hospital, Capital Medical University. National Clinical Research Center for Neurological Diseases, Beijing, China, ²Division of Clinical Electrophysiology, Department of Neurology, College of Medicine, University of Iowa, Iowa City , USA

P56-T | Preliminary results of abnormal pudendal nerve function in children with encopresis, incontinence and/or neurogenic bladder.

Maria Podgurskaya, <u>Daria Kanshina</u>, Daria Jakovleva, Oleg Vinogradov Moscow, Russian Federation