Society Proceedings

Abstracts of the 17th European Congress of Clinical Neurophysiology

Warsaw, Poland, 5-8 June 2019

Organised by

Polish Society of Clinical Neurophysiology

Prof. Maria EJMA, President, and Chair of the Local Organising Committee

Europe-Middle East-Africa Chapter (EMEAC) of the International Federation of Clinical Neurophysiology (IFCN)

Prof. Jonathan COLE, Chair of the EMEAC-IFCN Chapter Assoc. Prof. Hatice TANKISI, Secretary/Treasurer of the EMEAC-IFCN Chapter

P41-T

Distal nerve excitability block in severe paraproteinemic demyelinating neuropathy

Vasily Khodulev¹, **Sviatlana Vlasava**²

¹Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus, ²Polessky State University, Pinsk, Belarus

We present a rare case of a 55-year-old male who came to our attention due to the pronounced degree of injury to the peripheral nerves and a decrease in the excitability of their distal segments. Patient had a predominantly distal, chronic (5 years duration), slowly progressive, symmetric, predominantly sensory impairment (hypoaesthesia with hyperpathia) with sensory ataxia and mild weakness. Serum immunoelectrophoresis revealed an IgM-kappa monoclonal protein. CSF protein level was elevated at 3.5 g/L. NCS demonstrated a pronounced demyelinating sensorimotor peripheral neuropathy. Median, ulnar and sural sensory responses were not registered. Sympathetic skin response latencies were 1.8 ms (palm) and 2.3 ms (sole). Blink reflex latencies were prolonged up to 64 ms (R1) and 80 ms (R2). Motor NCS showed a pronounced prolongation of the distal CMAP latencies and conduction velocities decrease: median nerve - 61.0 ms and 9.0 m/s, ulnar - 44.0 ms and 10.0 m/s, peroneal – 58.5 ms and 9 m/s, tibial – 74.0 ms and 10 m/s respectively, femoral – 21.5 msms, facial – 34.2 Terminal latency indexes were smaller than 0.25. CMAP amplitudes was significantly reduced. Attention was drawn to the fact that the proximal CMAP area was greater than distal one. The reduction in CMAP area after distal simulation, as compared to proximal stimulation, was calculated as: (proximal CMAP – distal CMAP) x 100% / proximal CMAP. We called this diagnostic criterion the distal nerve excitability block. This criterion for the tibial and the median nerves was 85.5% and 58.3%, respectively.

Table of contents

Welcome letter		Page 3
Committees and Organisers		Page 4
Information for authors		Page 6
Accreditation		Page 11
Programme-at-a-glance		Page 12
Scientific programme		Page 20
	Wednesday, 5 June	Page 20
	Thursday, 6 June	Page 27
	Friday, 7 June	Page 35
	Saturday, 8 June	Page 41
Plenary speakers' abstracts		Page 45
Posters		Page 55
Index of authors		Page 88
City map		Page 108
Venue floor-plan		Page 110
General information		Page 112
Sponsors and exhibitors		Page 118
Patrons		Page 120
Satellite Symposium		Page 121

P40-T | EEG characteristics in Polish patients with Unverricht-Lundborg disease Magdalena Bosak¹, Anetta Lasek-Bal ¹Jagiellonian University, Kraków , Poland

Nerve and muscle excitability-Neuromuscular disorders

Chair: James Howells (Sydney, Australia)

P41-T | Distal nerve excitability block in severe paraproteinemic demyelinating neuropathy Vasily Khodulev¹, <u>Sviatlana Vlasava²</u> ¹Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus, ²Polessky State University, Pinsk, Belarus

P42-T | Feasibility of an International Normative Database for Nerve Excitability Studies. James M. Bell¹, Kazumoto Shibuya³, André Caetano², Mamede de Carvalho², Satoshi Kuwabara³, <u>Kelvin E. Jones¹</u>

¹University Of Alberta, Edmonton, Canada, ²Universidade de Lisboa, Lisbon, Portugal, ³Chiba University, Chiba, Japan

P43-T | Axonal Excitability Findings in Familial Dyslipidemia Abir Alaamel², Gizem Kızılay², Assoc Prof.İbrahim Başarıcı³, Prof.Hasan Ali Altunbaş⁴, <u>Hilmi</u> Uysal¹

¹Akdeniz University Faculty of Medicine, Neurology Dept, Antalya, Turkey, ²Akdeniz University School of Medicine, Antalya, Turkey, ³Akdeniz University Faculty of Medicine, Cardiology Dept, Antalya, Turkey, ⁴Akdeniz University Faculty of Medicine, Internal Medicine Dept, Antalya, Turkey

P44-T | Axonal excitability properties of bulbar-dominant amyotrophic lateral sclerosis Jong Seok Bae¹, Soon Kyung Shim¹, Sun Min Yoon¹, Byung Jo Kim² ¹Hallym University, College of Medicine, Seoul, South Korea, ²Korea University, Seoul, Korea

P45-T | Motor unit number estimation in facial muscles using the M Scan-Fit method. Miguel E. Habeych¹, Terry Trinh¹, Tushar Issar¹, Natalie C. Y. Kwai¹,², Arun V. Krishnan¹,²,² ¹Prince of Wales Clinical School, University of New South Wales (UNSW)., Sydney, Australia, ²Prince of Wales Medical School, University of New South Wales (UNSW), Sydney, Australia, ³Prince of Wales Hospital, Neurology Department, Neuromuscular Diseases Section., Sydney, Australia

P46-T | Unexpected electrophysiological findings in a boy with Balo concentric sclerosis. <u>Agnieszka Biedroń</u>¹, Aleksandra Gergont¹, Sławomir Kroczka¹¹*Chair of Child and Adolescent Neurology, Jagiellonian University Collegium Medicum, 265 Wielicka Street, Krakow 30-663, Poland, Kraków, Poland*

P47-T | Could needle EMG still be helpful in diagnosis of myotonia congenita? <u>Monika Nojszewska¹</u>, Anna Łusakowska¹, Małgorzata Gaweł¹, Janusz Sierdziński², Anna Sułek³, Woiletta Krysa³, Ewelina Elert-Dobkowska³, Andrzej Seroka¹, Anna M. Kamińska¹, Anna Kostera-Pruszczyk¹

¹Dept. of Neurology, Medical University of Warsaw, Warsaw, Poland, ²Dept. of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland, ³Dept. of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland

P48-T | Short exercise and short exercise with cooling tests in recessive myotonia congenita (Becker disease)

Monika Nojszewska¹, Anna Łusakowska¹, Małgorzata Gaweł¹, Marta Lipowska¹, Janusz Sierdziński², Anna Sułek³, Wioletta Krysa³, Ewelina Elert-Dobkowska³, Andrzej Seroka¹, Anna M. Kamińska¹, Anna Kostera-Pruszczyk¹

¹Dept. of Neurology, Medical University of Warsaw, Poland, ²Dept. of Medical Informatics and Telemedicine, Medical University of Warsaw, Poland, ³Dept. of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland