Abstracts of the 17th European Congress of Clinical Neurophysiology

Warsaw, Poland, 5-8 June 2019

Organised by

Polish Society of Clinical Neurophysiology
Prof. Maria EJMA, President, and Chair of the Local Organising Committee

Europe-Middle East-Africa Chapter (EMEAC) of the International Federation of Clinical Neurophysiology (IFCN)
Prof. Jonathan COLE, Chair of the EMEAC-IFCN Chapter
Assoc. Prof. Hatice TANKISI, Secretary/Treasurer of the EMEAC-IFCN Chapter
P41-T

Distal nerve excitability block in severe paraproteinemic demyelinating neuropathy

Vasily Khodulev¹, Sviatlana Vlasava²
¹Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus, ²Polessky State University, Pinsk, Belarus

We present a rare case of a 55-year-old male who came to our attention due to the pronounced degree of injury to the peripheral nerves and a decrease in the excitability of their distal segments. Patient had a predominantly distal, chronic (5 years duration), slowly progressive, symmetric, predominantly sensory impairment (hypoesthesia with hyperpathia) with sensory ataxia and mild weakness. Serum immunoelectrophoresis revealed an IgM-kappa monoclonal protein. CSF protein level was elevated at 3.5 g/L. NCS demonstrated a pronounced demyelinating sensorimotor peripheral neuropathy. Median, ulnar and sural sensory responses were not registered. Sympathetic skin response latencies were 1.8 ms (palm) and 2.3 ms (sole). Blink reflex latencies were prolonged up to 64 ms (R1) and 80 ms (R2). Motor NCS showed a pronounced prolongation of the distal CMAP latencies and conduction velocities decrease: median nerve – 61.0 ms and 9.0 m/s, ulnar – 44.0 ms and 10.0 m/s, peroneal – 58.5 ms and 9 m/s, tibial – 74.0 ms and 10 m/s respectively, femoral – 21.5 ms, facial – 34.2 Terminal latency indexes were smaller than 0.25. CMAP amplitudes was significantly reduced. Attention was drawn to the fact that the proximal CMAP area was greater than distal one. The reduction in CMAP area after distal simulation, as compared to proximal stimulation, was calculated as: (proximal CMAP – distal CMAP) x 100% / proximal CMAP. We called this diagnostic criterion the distal nerve excitability block. This criterion for the tibial and the median nerves was 85.5% and 58.3%, respectively.
<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome letter</td>
<td>3</td>
</tr>
<tr>
<td>Committees and Organisers</td>
<td>4</td>
</tr>
<tr>
<td>Information for authors</td>
<td>6</td>
</tr>
<tr>
<td>Accreditation</td>
<td>11</td>
</tr>
<tr>
<td>Programme-at-a-glance</td>
<td>12</td>
</tr>
<tr>
<td>Scientific programme</td>
<td>20</td>
</tr>
<tr>
<td>Wednesday, 5 June</td>
<td>20</td>
</tr>
<tr>
<td>Thursday, 6 June</td>
<td>27</td>
</tr>
<tr>
<td>Friday, 7 June</td>
<td>35</td>
</tr>
<tr>
<td>Saturday, 8 June</td>
<td>41</td>
</tr>
<tr>
<td>Plenary speakers’ abstracts</td>
<td>45</td>
</tr>
<tr>
<td>Posters</td>
<td>55</td>
</tr>
<tr>
<td>Index of authors</td>
<td>88</td>
</tr>
<tr>
<td>City map</td>
<td>108</td>
</tr>
<tr>
<td>Venue floor-plan</td>
<td>110</td>
</tr>
<tr>
<td>General information</td>
<td>112</td>
</tr>
<tr>
<td>Sponsors and exhibitors</td>
<td>118</td>
</tr>
<tr>
<td>Patrons</td>
<td>120</td>
</tr>
<tr>
<td>Satellite Symposium</td>
<td>121</td>
</tr>
</tbody>
</table>
P40-T | EEG characteristics in Polish patients with Unverricht-Lundborg disease
Magdalena Bosak1, Anetta Lasek-Bal
1Jagiellonian University, Kraków, Poland

Nerve and muscle excitability—Neuromuscular disorders

Chair: James Howells (Sydney, Australia)

P41-T | Distal nerve excitability block in severe paraproteinemic demyelinating neuropathy
Vasily Khodulev1, Sviatlana Vlasava2
1Republican Research And Clinical Center Of Neurology And Neurosurgery, Minsk, Belarus,
2Polessky State University, Pinsk, Belarus

James M. Bell1, Kazumoto Shibuya3, André Caetano2, Mamede de Carvalho2, Satoshi
Kuwabara3, Kelvin E. Jones1
1University Of Alberta, Edmonton, Canada, 2Universidade de Lisboa, Lisbon, Portugal, 3Chiba
University, Chiba, Japan

P43-T | Axonal Excitability Findings in Familial Dyslipidemia
Abir Alaamel2, Gizem Kızılay2, Assoc Prof İbrahim Başarıcı1, Prof. Hasan Ali Altunbaş4, Hilmi
Uysal1
1Akdeniz University Faculty of Medicine, Neurology Dept, Antalya, Turkey, 2Akdeniz University
School of Medicine, Antalya, Turkey, 3Akdeniz University Faculty of Medicine, Cardiology Dept,
Antalya, Turkey, 4Akdeniz University Faculty of Medicine, Internal Medicine Dept, Antalya, Turkey

P44-T | Axonal excitability properties of bulbar-dominant amyotrophic lateral sclerosis
Jong Seok Bae1, Soon Kyung Shim1, Sun Min Yoon1, Byung Jo Kim2
1Hallym University, College of Medicine, Seoul, South Korea, 2Korea University, Seoul, Korea

P45-T | Motor unit number estimation in facial muscles using the M Scan-Fit method.
Miguel E. Habeych1, Terry Trinh1, Tushar Issar1, Natalie C. Y. Kwai1,2, Arun V. Krishnan1,2,3
1Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia,
2Prince of Wales Medical School, University of New South Wales (UNSW), Sydney, Australia,
3Prince of Wales Hospital, Neurology Department, Neuromuscular Diseases Section., Sydney, Australia

P46-T | Unexpected electrophysiological findings in a boy with Balo concentric sclerosis.
Agnieszka Biedroń1, Aleksandra Gergont1, Sławomir Kroczka1
1Chair of Child and Adolescent Neurology, Jagiellonian University Collegium Medicum, 265 Wielicka
Street, Krakow 30-663, Poland, Kraków, Poland

P47-T | Could needle EMG still be helpful in diagnosis of myotonia congenita?
Monika Nojszewska1, Anna Łusakowska1, Małgorzata Gawel1, Janusz Sierdziński2, Anna Sulek3,
Woiletta Krysa3, Ewelina Elert-Dobkowska3, Andrzej Seroka1, Anna M. Kamińska1, Anna
Kostera-Pruszczyk1
1Dept. of Neurology, Medical University of Warsaw, Warsaw, Poland, 2Dept. of Medical Informatics
and Telemedicine, Medical University of Warsaw, Warsaw, Poland, 3Dept. of Genetics, Institute of
Psychiatry and Neurology, Warsaw, Poland

P48-T | Short exercise and short exercise with cooling tests in recessive myotonia congenita
(Becker disease)
Monika Nojszewska1, Anna Łusakowska1, Małgorzata Gawel1, Marta Lipowska1, Janusz
Sierdziński2, Anna Sulek3, Wioletta Krysa3, Ewelina Elert-Dobkowska3, Andrzej Seroka1, Anna
M. Kamińska1, Anna Kostera-Pruszczyk1
1Dept. of Neurology, Medical University of Warsaw, Warsaw, Poland, 2Dept. of Medical Informatics
and Telemedicine, Medical University of Warsaw, Warsaw, Poland, 3Dept. of Genetics, Institute of Psychiatry and
Neurology, Warsaw, Poland