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Abstract: Structure-related biological activities of flavanones are still considered largely unexplored.
Since they exhibit various medicinal activities, it is intriguing to enter deeper into their chemical
structures, electronic transitions or interactions with some biomolecules in order to find properties
that allow us to better understand their effects. Little information is available on biological activity of
flavanone and its monohydroxy derivatives in relation to their physicochemical properties as spectral
profiles, existence of protonated/deprotonated species under pH changes or interaction with Calf
Thymus DNA. We devoted this work to research demonstrating differences in the physicochemical
properties of the four flavanones: flavanone, 2′-hydroxyflavanone, 6-hydroxyflavanone and
7-hydroxyflavanone and linking them to their biological activity. Potentiometric titration, UV–Vis
spectroscopy were used to investigate influence of pH on acid–base and spectral profiles and to
propose the mode of interaction with DNA. Cyclic voltammetry was applied to evaluate antioxidant
potentiality and additionally, theoretical DFT(B3LYP) method to disclose electronic structure and
properties of the compounds. Molecular geometries, proton affinities and pKa values have been
determined. According to computational and cyclic voltammetry results we could predict higher
antioxidant activity of 6-hydroxyflavanone with respect to other compounds. The values of Kb

intrinsic binding constants of the flavanones indicated weak interactions with DNA. Structure–activity
relationships observed for antioxidant activity and DNA interactions suggest that 6-hydroxyflavanone
can protect DNA against oxidative damage most effectively than flavanone, 2′-hydroxyflavanone
or 7-hydroxyflavanone.

Keywords: monohydroxy flavanones; dissociation constants; DNA interactions; structure–activity
relationship

1. Introduction

Flavonoids belong to a large group of polyphenolic compounds with the structure of benzo-γ-piron
and are commonly found in plants. They are hydroxylated phenolic substances and are known to
be synthesized by plants in response to microbial infection [1]. Many flavonoid structures display a
variety of biochemical properties, including estrogenic, antioxidant, antiviral, antibacterial, antiobesity,
and anticancer activities. The diverse pharmacological activities of flavonoids have drawn considerable
attention for their use in personal health care [2]. With the publicity given to the beneficial effects, the
consumption of dietary supplements containing flavonoids has increased significantly. It has been
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pointed out that the excess use of these compounds could have drastic effects, as high concentrations of
flavonoids may act as mutagens, pro-oxidants and inhibitors of hormone metabolizing enzymes. Their
chemical nature depends on their structural class, degree of hydroxylation and polymerization or other
substitutions and conjugations. It affects their bioavailability and pharmacological action. Flavanone
is the precursor to all flavonoid structures. Flavanones, which fall under a class of flavonoids, have
important antioxidant properties [3,4] and interesting biological activities [5,6]. It has been indicated
that flavanones with none or single OH group has anti-proliferation potential on colorectal carcinoma
cells and mouse fibroblast NIH3T3 cells [7,8]. 6-Hydroxyflavanone is one of the members of above
class of flavanoids. It is a monohydroxyflavanone which has hydroxy group at its 6th position. It has
been reported [9] that flavanone with the only hydroxylation at C6 has a significant cytotoxic effect in
human leukemia HL-60 cells accompanied by the occurrence of apoptotic bodies, and hypodiploid cells,
characteristics of apoptosis. In turn 2′-hydroxyflavanone, a nontoxic natural flavonoid has exhibited
pleiotropic anticancer effects in many cancer types, including prostate and breast cancers [10,11].
On the other side, it has been found that 7-hydroxyflavanone has weak effect on inhibiting MCF-7 cell
proliferation [12] and low cytotoxic effect on acute lymphoblastic leukemia (ALL) and chronic myeloid
leukemia (CML) cell lines [13].

The above mentioned interesting pharmacological potential of flavanone and its monohydroxy
derivatives prompted us to investigate these chemical compounds. Structure-related biological
activities of flavanones are still considered unexplained. Since they exhibit various medicinal activities,
it is intriguing to enter deeper into their chemical structures, electronic transitions or interactions with
some biomolecules in order to find properties that allow us to better understand their effects. Such
a knowledge will create the possibility of more conscious and purposeful use of these compounds
both in medicine and in dietary supplements. Little information is available on biological activity
of flavanone and its monohydroxy derivatives in relation to their physicochemical properties such
as spectral profiles, existence of protonated/deprotonated species under pH changes or interaction
with Calf Thymus DNA (CT DNA). Studies in solution are indispensable, because biologically active
substances act in the cell compartments with different water contents, and therefore, the information
about the acid–base properties give an idea of which chemical forms e.g., protonated/deprotonated of
biomolecule may be involved in biochemical processes in the cells. We devoted this work to research
aimed at demonstrating differences in the physicochemical properties of the four flavanones and
linking them to their biological activity.

Recently, computational simulations are more and more frequently applied in the studies on
electronic structures and properties of biologically important molecules. Theoretical studies may
provide very useful and, in many cases unavailable experimentally, information about the structure
and properties of biomolecules. Among various theoretical methods, density functional theory (DFT)
approach has been extensively used in the prediction of structure-related properties of flavanones
and structurally similar compounds [14–16]. In particular it is possible to conclude about antioxidant
activity of flavanones based on the analysis of the DFT predicted frontier orbitals and the DFT calculated
quantum chemical descriptors [14].

UV–Vis spectra of medium-size molecules such as flavanones and structurally related compounds
are usually well predicted using the time-dependent TD DFT formalism [14,17,18]. Within the framework
of the TD DFT theory, the time-dependent oscillating electric field is incorporated in the ground state
structure and excitation energies, oscillator strengths and transitions vectors can be determined from the
linear response [19]. DFT and TD DFT methods have been usually shown to provide reasonable and
consistent with experimental data results with relatively low computational costs. Previously performed
theoretical studies on phenolic compounds with the hybrid Becke’s three parameters with Lee–Yang-Parr
(B3LYP) functional [20–22] give results consistent with experimental data [23–25]. The choice of the
applied exchange-correlation functional and the utilized basis set is usually the compromise between the
time of computations and the quality of the obtained results. Although previously published studies [18]
showed that application of 6-31G (d,p) basis set usually gives reasonable molecular geometries of chalcone
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molecules, the incorporation of diffuse and polarization functions is mandatory for UV spectral studies,
especially for chromophores with extended π electrons [26].

It is well known that the type of solvent may affect UV–Vis spectra of chromophores, therefore, the
incorporation of solvent effects is very important in the theoretical prediction of the absorption spectra.
Polarizable Continuum Model (PCM) is the most frequently incorporated solvation model in theoretical
studies of flavanones and chalcones structurally similar to the compounds under study [14,15]. The
PCM model [27,28] is based on the assumption that solute is embedded in a shape-adapted cavity
within solvent modelled as a dielectric continuum of defined dielectric constant.

To the best of our knowledge only few previously published studies have been devoted to
the structure and properties of the studied hydroxyflavanones and their corresponding chalcones.
Wróblewski and et. [15] have applied both experimental (absorption and fluorescence spectroscopy)
and theoretical (TD DFT(PCM)) methods to describe the photophysical characteristic of 7-HF in
methanol, ethanol and acetonitrile.

The structure and spectral characteristic of 2′hydroxychalcone and its derivatives with different
alkyloxy groups at position 4′ were previously extensively investigated by Serdiuk et al. [16]. The
authors concluded that generally both in crystals and solution there is a little impact of substituents on
absorption spectra of chalcones. The authors revealed that 2′hydroxychalcones form crystal lattices
with different packing patterns. Hydroxychalcones are planar in gas and crystalline phase and they
do not change the conformation upon excitation. The authors proposed that in liquid media several
processes for the excited state deactivation such as isomerization in the S1 state (geometrical changes),
intersystem crossing and conical intersection are possible. The authors concluded that molecular
conformation is the key factor determining the fluorescent properties of the phototautomer keto
species formed by the excited state intramolecular proton transfer (ESIPT). The ESIPT process in
2′ hydroxychalcones, which is facilitated by the presence of hydrogen bond between hydroxy and
carbonyl groups, was also studied previously [29].

The aims of this work were to investigate influence of pH on acid–base and spectral profiles
of flavanone (F), 2′-hydroxyflavanone (2′HF), 6-hydroxyflavanone (6HF) and 7-hydroxyflavanone
(7HF) and to reveal their interactions with CT DNA. Potentiometric titration, UV–Vis spectroscopy
were used to characterize physicochemical properties of these flavanones and to propose the mode
of interaction with CT DNA. Cyclic voltammetry was applied to evaluate antioxidant potentiality
of studied flavanones. Additionally, a theoretical DFT (B3LYP) method has been used to disclose
electronic structure and properties of the compounds. In particular molecular geometries, proton
affinities and pKa values have been determined. Moreover, the time dependent DFT (TD DFT(B3LYP))
calculations have been performed on the optimized geometries to provide insight into the energies and
nature of the electronic transitions which contribute to the absorption spectra of F, 2′HF, 6HF and 7HF.

2. Results and Discussion

2.1. Spectral Profiles of Flavanones

Chemical structures of flavanones used in this study are illustrated in Scheme 1.
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spectra of new compounds, (2) understand colour modulation in fruit and flowers, (3) estimate the 
capacity of compounds to act as UV filters and (4) understand the capacity of compounds to be 
chemically transformed by UV light induction. The UV/Vis spectra of polyphenols are generally 
attributed to electronic transitions between π-type molecular orbitals, which are more or less 
extended over the molecular backbone, depending on the polyphenol subclass. In flavanones, due to 
the absence of the double bond between C2 and C3, electron delocalization is broken and transition 
of HOMO→LUMO orbitals becomes completely forbidden, due to orbital separation [14]. It leads to 
substantially reducing the conjugation, as compare to flavonols or flavones. Therefore, flavanones 
are colorless, while flavones and flavonols are yellow/-ish. It is worth noting that the absence of the 
2,3-double bond brings about the existence of two stereoisomers for flavanones. However, the 
UV/Vis spectra of these isomers are very similar and it is difficult to distinguish them from each 
other. 

The absorption spectra of 2 × 10−5 M solutions of flavanone, 6-hydroxyflavanone, 
7-hydroxyflavone and 2’-hydroxyflavanone were obtained at different pH in aqueous solution 
containing 6.25 × 10−3 M HNO3 or HCl, 0.1 M NaCl and 0.5% of DMSO (Figure S1). The flavanones 
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these ions effected the molecular structure of the compounds. Protonated species released protons. 
The UV spectra of flavanones show usually two strong absorption bands commonly referred to as 
band I (300–380 nm) and band II (240–280 nm) [30,31]. Band I is associated with the presence of a 
B-ring cinnamoyl system. Band II absorption is due to A-ring benzoyl system (Figure 1). 

 

Scheme 1. Chemical structures of flavanones: (a) flavanone; (b) 2′-hydroxyflavanone; (c)
6-hydroxyflavanone; (d) 7-hydroxyflavanone (ChemDraw).

These compounds shared the similar basic structure but they differ by hydroxylation pattern.
Flavanone is one major component of flavonoids that is composed of two benzene rings (A and B)
linked through a heterocyclic pyran ring (C) in the middle. The 6-OH flavanone (6HF), 7-OH flavanone
(7HF) and 2′-OH flavanone (2′HF) contain an OH group on one of benzene rings. Evaluation of
UV–Vis absorption spectra of polyphenols is of great importance to (1) predict optical spectra of
new compounds, (2) understand colour modulation in fruit and flowers, (3) estimate the capacity
of compounds to act as UV filters and (4) understand the capacity of compounds to be chemically
transformed by UV light induction. The UV/Vis spectra of polyphenols are generally attributed to
electronic transitions between π-type molecular orbitals, which are more or less extended over the
molecular backbone, depending on the polyphenol subclass. In flavanones, due to the absence of the
double bond between C2 and C3, electron delocalization is broken and transition of HOMO→LUMO
orbitals becomes completely forbidden, due to orbital separation [14]. It leads to substantially reducing
the conjugation, as compare to flavonols or flavones. Therefore, flavanones are colorless, while flavones
and flavonols are yellow/-ish. It is worth noting that the absence of the 2,3-double bond brings about
the existence of two stereoisomers for flavanones. However, the UV/Vis spectra of these isomers are
very similar and it is difficult to distinguish them from each other.

The absorption spectra of 2× 10−5 M solutions of flavanone, 6-hydroxyflavanone, 7-hydroxyflavone
and 2′-hydroxyflavanone were obtained at different pH in aqueous solution containing 6.25 × 10−3

M HNO3 or HCl, 0.1 M NaCl and 0.5% of DMSO (Figure S1). The flavanones differed in electronic
structure under pH changing. Hydroxide ions were added into solution and these ions effected
the molecular structure of the compounds. Protonated species released protons. The UV spectra of
flavanones show usually two strong absorption bands commonly referred to as band I (300–380 nm)
and band II (240–280 nm) [30,31]. Band I is associated with the presence of a B-ring cinnamoyl system.
Band II absorption is due to A-ring benzoyl system (Figure 1).
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Substitutions on the A or B ring may produce hypsochromic or bathochromic shifts of the
absorptions, which are useful for clarifying structures [32]. The spectra in Figure 2 and Figure S1
indicate different behavior of F, 6HF, 7HF and 2′HF although they share a similar basic structure, but
their different hydroxylation pattern has an impact on spectral profiles under the pH changes.
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The clear differences in the spectral profile of flavanones as a function of pH are attributed to
the formation of different protolytic species forming especially in strongly basic solution whose light
absorbing characteristics differ from each other. Flavanones studied exhibit a band I situated at 358 nm
for 6HF, 314 nm for F and 2′HF, 310 nm for 7HF. The all flavanones disclose shoulders at around 255 nm
of band II in acidic pH while in basic region only 7HF reveals the presence of this band located at around
λmax 265 nm (Figure 2). The long wavelength absorption band is assigned to the HOMO-3→LUMO
transition in which the charge densities of both orbitals are strongly localized on ring A [14,33]. This
plays an important role in shifting the absorption maxima of flavanones. An exceptional behavior of
7HF can indicate different mechanism associated with deprotonation of 7–OH group with comparison
to 6–OH or 2′–OH groups in basic pH. On the other hand, another exceptional behavior but at acidic
pH is observed for 6HF. The spectra of this flavanone recorded in the HNO3 and HCl media differ
from each other in comparison to the spectra of the F, 7HF or 2′HF. Bathochromic shift of band I and its
splitting in HNO3 solution with respect to the HCl-NaCl medium is clearly seen in the spectrum of
6HF. This may be due to the fact that the structure of 6HF is highly sensitive to electronic state and,
very likely, the charge densities of orbitals localized on A-ring are more susceptible to changes in the
surrounding environment than in the case of other flavanones. Such a spectral profile of 6HF indicates
an interaction of the compound with protic solvent which originates from intermolecular hydrogen
bonding [34]. Red shift in absorption maximum may indicate stronger influence of intermolecular
hydrogen bond formation to stabilize molecular ground state [35]. It is thought to be a key feature of
polar protic solvents [36]. Hence, one can infer that 6HF is more sensitive to the microenvironmental
surroundings compared to other flavanones.

All flavanones form chalcones in alkaline medium. Chalcones or benzylideneacetophenone are
the important constituents of natural sources. The structure of parent molecule of chalcones consists of
two phenyl rings (A and B) and one α, β unsaturated double bond (Figure 3). Structures of flavanones
especially the position of B ring have an impact on chalcone formation. Spectra of flavanones studied
can indicate formation of chalcones in F, 6HF, 7HF and 2′HF systems. Certain amounts of both isomers,
i.e., flavanones and their hydroxychalcones (ChOH) are measurable in final equilibrium at pH above 11.
(Figure 2, see also Figure 11 in Section 2.4). The susceptibility of these compounds to chalcone formation
may be visualized as the result of increased acidity of the hydrogen atom alpha to the carbonyl group
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coupled with ionization of the hydroxyl group. Chalconate anion (ChO-) prevails, accordingly to a
proton-transfer reaction: F◦ + OH−� ChO− + H2O in excess of strong base (NaOH) [37] (Figure 3).
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When the chalcone structural features are formed the spectra of F, 6HF and 2′HF show a broad
maximum in the region of 398–427 nm (Figure 2b) similar to the most of flavanones [32]. The spectrum
of 7HF exhibits a completely different spectral profile in basic pH (strong bands at 265 and 358 nm)
but similar to other 7-hydroxyflavanones as for example liquiritigenin [30]. Taking into account our
results and literature data one can conclude that all flavanones studied are able to form chalcones in
alkaline medium.

2.2. Theoretical Calculations

2.2.1. The Electronic Structures of the Compounds Studied Predicted by the
DFT(B3LYP)/6-31G(d,p)/PCM Method

Due to the presence of the chiral center in C2, the studied flavanones may exist in the form of
two stereoisomers R and S and the geometries of both stereoisomers were optimized with the use of
DFT(B3LYP)/6-31G(d,p)/PCM method. Comparing the obtained electronic energy values (see Table
S1) it may be noticed that S stereoisomers of the flavanones were about 2 kcal/mol more stable than
corresponding the R forms. The DFT(B3LYP)/6-31G(d,p)/PCM optimized geometries (2S-flavanones)
are presented in Figure 4 while the selected geometrical parameters of the optimized structures are
shown in Table 1.
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Figure 4. The DFT(B3LYP)/6-31G(d,p)/PCM optimized geometries of the 2S-flavanones: F, 2′HF, 6HF
and 7HF. The atom numbering is presented for F; the same is for 2′HF, 6HF and 7HF. (Gaussian 09 and
GaussView 5.0.8 [38,39]; Paint/Windows 10; Microsoft Office PowerPoint 2007 software).

Table 1. The selected geometrical parameters of the DFT(B3LYP)/6-31G(d,p)/PCM optimized structures.
The atom numbering is the same as for F in Figure 4.

Compound C10C9O1C2 [◦] C9C10C4C3 [◦] O1C2C1′C6′ [◦] C3C2C1′C6′ [◦]

F −21.055 −2.945 −43.348 78.770
2′HF −14.690 −7.783 −23.689 98.713
6HF −22.449 −2.431 −43.553 78.464

6HFexp 1
−18.892 −4.058 −55.323 77.974

7HF −21.531 −2.313 −44.582 77.547
1 Crystallographic data taken from The Cambridge Crystallographic Data Centre (CCDC) [40]; deposition number
1225194, [41].

The discontinuity in the electron conjugation caused by the absence of the C2–C3 double bond
in the chromone ring C and the presence of the substituents at C2 (phenyl substituent in case of
flavanone, 6HF and 7HF and 2′hydroxyphenyl in the case of 2′HF) leads to the deviation of the part of
ring C from planarity. This deviation from planarity can be described by the values of C10C9O1C2
and C9C10C4C3 dihedral angles. In the case of all the studied compounds, with the exception of
2′HF, these values are about −20 and −3 degrees for C10C9O1C2 and C9C10C4C3, respectively (see
Table 1). From Figure 4 it may be easily noticed that the structures of the studied flavanones are not
planar with the dihedral angles of around −40 and 80 degrees between C and B rings of F, 6 HF and 7
HF. Similar values have been obtained by Shireen et al. [42]. The theoretically predicted geometrical
parameters of aqueous 6 HF correlated quite well with the available experimental data [40,41], taking
into account that geometry optimization has been performed for a single S stereoisomer in aqueous
solution. Examination of the geometry of 6HF reveals easier possibility of interactions of hydrogen
bonding leading in aqueous solution to involvement of water molecules in formation of linkage of
hydrogen bonds between 6-OH and oxygen carbonyl.
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Analysis of the frontier orbitals (HOMO, LUMO) may provide important information for
understanding the electronic properties and the reactivity of the molecules. The HOMO and LUMO
orbital energies together with the quantum chemical descriptors (determined using orbital vertical
method according to the Koopmann’s theorem) are gathered in Table 2. The latter descriptors may be
helpful in the assessment of the antioxidant potential of the studied compounds.

Table 2. Quantum chemical descriptors for F, 2′HF, 6HF and 7HF (hardness (η); electronegativity (χ);
chemical potential (µ); electrophilicity index (ω); softness (S)) calculated from ionization potential (IP)
and electron affinity values (EA), which were estimated by orbital vertical method.

Compound EHOMO
2

[eV]
ELUMO

2

[eV]
HOMO-LUMO

gap [eV]
IP

[eV]
EA

[eV] η χ µ ω S

F −6.40 −1.70 4.70 6.40 1.70 2.35 4.05 −4.05 4.05 0.21
2′HF −6.15 −1.67 4.48 6.15 1.67 2.24 3.91 −3.91 3.91 0.22
6HF −5.87 −1.74 4.13 5.87 1.74 2.07 3.81 −3.81 3.81 0.24
7 HF −6.32 −1.48 4.84 6.32 1.48 2.42 4.05 −4.05 4.05 0.21

2 calculated at the DFT(B3LYP)/6-31G(d,p)/PCM(water) method level of theory.

The calculated values of chemical quantum descriptors: η, χ, µ, ω and S are similar to those
previously calculated for other flavanones [42] and comparable to the values estimated for a well-known
anti-oxidant quercetin [43]. The results in Table 2 clearly point out that 6HF can reveal the best
antioxidant potentiality with respect to F, 2′HF or 7HF which as our calculation predict can show very
similar antioxidant activities. The graphical representations of frontier orbitals are reported in Figure 5.
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Taking these facts into account one can conclude that our quantum mechanics calculations support
anti-oxidant activity of the studied flavanones as it was found out by experimental data [44,45].
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2.2.2. The Theoretically Predicted UV–Vis Characteristic of the Studied Flavanones

In polyphenols, π-type molecular orbitals, which are extended over the molecular backbone, are
involved in the electronic transitions. Absorption spectra of flavanones usually consist of the broad
band (II) located between 270 and 290 nm with a shoulder around 320 nm. Substituents in the flavanone
ring have great impact on the location of the absorption maxima [42]. Absorption spectra of F, 2′HF,
6HF and 7HF in water have been calculated within the TD DFT (B3LYP)/6-31+G(d,p)/PCM model
using the DFT(B3LYP)/6-31G(d,p)/PCM optimized geometries. The extension of the basis set in the TD
DFT calculations is important for better description of the extended π-systems, and the application
of 6-31+G(d,p) basis set was the compromise between the time of calculation and the quality of the
obtained results. The simulated UV–Vis spectra of the most stable 2S stereoisomers of the studied
flavanones are presented in Figure 6, while the spectroscopic parameters of the electronic transitions to
the three low-lying singlet excited states are reported in Table 3.

Molecules 2019, 24, x FOR PEER REVIEW 10 of 26 

 

2.2.2. The Theoretically Predicted UV–Vis Characteristic of the Studied Flavanones 

In polyphenols, π-type molecular orbitals, which are extended over the molecular backbone, 
are involved in the electronic transitions. Absorption spectra of flavanones usually consist of the 
broad band (II) located between 270 and 290 nm with a shoulder around 320 nm. Substituents in the 
flavanone ring have great impact on the location of the absorption maxima [40]. Absorption spectra 
of F, 2’HF, 6HF and 7HF in water have been calculated within the TD DFT 
(B3LYP)/6-31+G(d,p)/PCM model using the DFT(B3LYP)/6-31G(d,p)/PCM optimized geometries. 
The extension of the basis set in the TD DFT calculations is important for better description of the 
extended π-systems, and the application of 6-31+G(d,p) basis set was the compromise between the 
time of calculation and the quality of the obtained results. The simulated UV–Vis spectra of the most 
stable 2S stereoisomers of the studied flavanones are presented in Figure 6, while the spectroscopic 
parameters of the electronic transitions to the three low-lying singlet excited states are reported in 
Table 3.  

 
Figure 6. The simulated UV–Vis spectra of the 2S flavanones: flavanone, 6-hydroxyflavanone, 
7-hydroxyflavanone and 2’-hydroxyflavanone. (Gaussian 09 and GaussView 5.0.8 Origin(Pro) 
software). 

Table 3. The TD (nstates = 10) DFT(B3LYP)/6-31+G(d,p)/PCM calculated spectroscopic parameters 
(transition electric dipole moment (μ); wavelength corresponding to the excitation energy (λ) and 
oscillator strength (f)) of the electronic transitions to the three low-lying excited singlet states of 2S 
stereoisomers of F, 2’HF, 6HF and 7HF.  

2S 
Stereoisomer 

S0→S1 S0→S2 S0→S3 
μ [D] λ [nm] f μ [D] λ [nm] f μ [D] λ [nm] f 

F 0.0510 327.98 0.0047 0.6799 314.66 0.0656 0.1213 271.61 0.0136 
2’HF 0.0292 333.84 0.0027 0.5159 313.93 0.0499 0.2120 304.44 0.0208 
6HF 0.8831 356.10 0.0753 0.0528 327.79 0.0049 0.0794 275.33 0.0088 
7HF 0.0463 317.88 0.0044 0.7863 300.10 0.0793 2.7015 269.90 0.3040 

As expected for enantiomers, the theoretically predicted UV–Vis absorption characteristics of 
both 2S and 2R stereoisomers of the flavanones are similar. Analyzing the theoretically predicted 
UV–Vis spectra, it may be noticed that the lowest energy absorption band of 6HF is red shifted with 
respect to the other compounds. The TD DFT(B3LYP)/6-31+G(d,p)/PCM calculations predicted that 
the lowest energy absorption band of 6HF arises from single electronic transition of the energy of 
3.4669 eV (356.10 nm) and is quite intense (f = 0.0753) as compared to the oscillator strength of the 
lowest transitions for the other compounds. The energy separation between states S1 and S2 is higher 

 

200 250 300 350 400 450 500
0.0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

2'-OH flavanone

7-OH flavanone

ep
si

lo
n 

wavelength [nm]

Flavanone

6-OH flavanone

Figure 6. The simulated UV–Vis spectra of the 2S flavanones: flavanone, 6-hydroxyflavanone,
7-hydroxyflavanone and 2′-hydroxyflavanone. (Gaussian 09 and GaussView 5.0.8 Origin(Pro) software).

Table 3. The TD (nstates = 10) DFT(B3LYP)/6-31+G(d,p)/PCM calculated spectroscopic parameters
(transition electric dipole moment (µ); wavelength corresponding to the excitation energy (λ) and
oscillator strength (f)) of the electronic transitions to the three low-lying excited singlet states of 2S
stereoisomers of F, 2′HF, 6HF and 7HF.

2S
Stereoisomer

S0→S1 S0→S2 S0→S3

µ [D] λ [nm] f µ [D] λ [nm] f µ [D] λ [nm] f

F 0.0510 327.98 0.0047 0.6799 314.66 0.0656 0.1213 271.61 0.0136
2′HF 0.0292 333.84 0.0027 0.5159 313.93 0.0499 0.2120 304.44 0.0208
6HF 0.8831 356.10 0.0753 0.0528 327.79 0.0049 0.0794 275.33 0.0088
7HF 0.0463 317.88 0.0044 0.7863 300.10 0.0793 2.7015 269.90 0.3040

As expected for enantiomers, the theoretically predicted UV–Vis absorption characteristics of
both 2S and 2R stereoisomers of the flavanones are similar. Analyzing the theoretically predicted
UV–Vis spectra, it may be noticed that the lowest energy absorption band of 6HF is red shifted with
respect to the other compounds. The TD DFT(B3LYP)/6-31+G(d,p)/PCM calculations predicted that
the lowest energy absorption band of 6HF arises from single electronic transition of the energy of
3.4669 eV (356.10 nm) and is quite intense (f = 0.0753) as compared to the oscillator strength of the
lowest transitions for the other compounds. The energy separation between states S1 and S2 is higher
(0.3 eV) in comparison to the other studied compounds; moreover S0→S2 has low oscillator strength
(f = 0.0049); this transition is probably obscured by the more intense S0→S1 transition (0.0753). The
S0→S1 transition is the HOMO→LUMO transition of the π→π* character. The topologies of orbitals
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having considerable contributions in the three low lying electronic transitions in the studied compounds
are presented in Figure 5. The HOMO and LUMO orbitals are located mainly on the A and C rings
of 6HF, HOMO with high coefficient on the oxygen atom of the 6-OH group. The S0→S2 and S0→S3

transitions mainly involve the HOMO-1 and LUMO orbitals. The HOMO-1 orbital is predominantly
extended on the B ring and on the carbonyl group of the ring C.

The TD DFT(B3LYP)/6-31+G(d,p)/PCM model predicted that the maximum of the lowest
absorption band of the 7HF is around 270 nm (see Figure 6). Analyzing the calculated spectroscopic
parameters (Table 3), it can be noticed that 3 transitions contribute to that band: two weak close
lying transitions S0→S1 (f = 0.0044) and S0→S2 (f = 0.0793) and intense S0→S3 transition (0.3040) at
~270 nm. The S0→S1 transition is the mixture of transitions: HOMO-3→LUMO; HOMO-2→LUMO
and HOMO-1→LUMO and HOMO→LUMO. The calculations predicted that S1 and S2 states are very
close in energy (the energy separation between them is about 0.2 eV); the TD DFT (B3LYP) level of
theory has some limitations in the description of the photophysics of such close-energy states; that is the
TD DFT method overestimates the excitation energies of such transitions, especially for chromophores
with extended π-electrons [26]. The S0→S2 transition of 7HF is mainly HOMO→LUMO transition,
while S0→S3 transition primarily involves transition between HOMO-1 and LUMO. The HOMO and
LUMO orbitals are predominantly localized on the ring A and C with considerable contribution on the
oxygen atom of the 7 OH group.

The calculated long-wavelength absorption band of flavanone F consists of two close lying
(0.16 eV) transitions S0→S1 and S0→S2, wherein the S0→S1 transition is very weak (f = 0.0047) and
obscured by the intense S0→S2 transition (f = 0.0656). The S0→S1 and S0→S3 electronic transitions
are mainly HOMO-1→LUMO transitions, while S0→S2 is predominantly HOMO→LUMO transition.
The LUMO orbital of F is located on the A and C rings; the HOMO orbital also but additionally with
small coefficients on the ring B. The HOMO-1 orbital of F has large contributions on the B ring and also
extends. It is delocalized over the A and C rings.

In the case of the 2′HF the lowest energy absorption band arises from three low lying (~0.1 eV)
transitions S0→S1, S0→S2 and S0→S3. The S0→S1 is less intense as compared to the S0→S2. The S0→S1

transition is the HOMO→LUMO transition, while S0→S2 and S0→S3 are the HOMO-1→LUMO and
HOMO-2→LUMO, respectively. The HOMO-1 and LUMO orbitals of 2′HF are localized mainly on
the A and C rings; LUMO with smaller coefficient on ring B with respect to HOMO-1. The HOMO
orbital is mainly localized on the ring B; while the HOMO-2 on the B and C rings. The theoretically
predicted short wavelength absorption band of 2′HF arises from two electronic transitions: the less
intense (f = 0.0072) HOMO-2→LUMO transition of the energy of 4.6318 (267.68 nm) most probably
is suppressed by the intense transition of predominant HOMO-3→LUMO (f = 0.1920) located at
251.89 nm. Comparing the theoretically predicted and experimental spectra of 7HF at pH 6.8 it can be
observed that the TD DFT(B3LYP)/6-31G+(d,p) calculated excitation energies are overestimated which
is a typical tendency error of the applied theoretical model (Figure 7).
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Figure 7. Experimental and simulated UV–Vis spectra of the flavanones: (a) F, (b) 2′HF, (c) 6HF and
(d) 7HF. (Origin(Pro) software using the original files from the instrument: Perkin-Elmer Lambda 11
spectrophotometer).

The experimental and simulated spectra of F, 2′HF and 6HF are similar to each other (Figure 7).
A pronounced difference occurs in the spectrum of 7HF. It consists of a long-wavelength band with
maximum at around 310 nm and a shoulder at around 375 nm on the red region of the spectrum. It may
arise from two theoretically predicted transitions S0→S3 (~270 nm) and S0→S2 (~300 nm). The shoulder
of the long-wavelength of the experimental spectrum at pH 6.8 may be attributed to the theoretically
predicted S0→S1 transition (318 nm), which is characterized by the very low oscillator strength and it
may be suppressed by the more intense S0→S2 transition. It can be noticed from the deconvolution
of the theoretical spectrum of 7HF that the three lowest energy gauss-shape bands (at around 300,
275, 265 nm) could be attributed to the theoretically predicted S0-S1, S0-S2 and S0-S3 transitions at 317,
300 and 270 nm, respectively. The higher energy shoulder arises from the theoretically anticipated
electronic transition at 221.73 nm (Figure 7).

UV–Vis spectra together with theoretical calculations give information about structural changes
in molecules, which are very important in explanation of biological activity of the compounds.

2.2.3. The Electronic Structures of the Chalcones Predicted by the DFT(B3LYP)/6-31G(d,p)/PCM
Method

In order to provide more insight into the UV–Vis spectra of the studied flavanones in basic solutions,
the structures of corresponding chalcones have been optimized with the DFT(B3LYP)/6-31G(d,p)/PCM
model and the most stable structures are presented in Figure 8, while the selected geometrical
parameters of the optimized structures are reported in Table 4. The α,β-double bond is in the trans
configuration due to the strong steric effect between the B-ring and the carbonyl group in the most stable
configuration of chalcones. Analyzing the optimized structures it is evident that the geometries of the
studied chalcones are nearly planar (Table 4) as it has been previously determined by Serdiuk et al. [16].
The calculated geometrical parameters suggest the possibility of the formation of intramolecular
hydrogen bond between hydroxy group O2′-H and carbonyl oxygen, which favors planar geometry
and may facilitate the occurrence of intramolecular proton transfer processes upon excitation [16].

Due to the importance of π electron delocalization in chalcones, the TD DFT calculations have been
performed applying extended 6-31+G(d,p) basis set and with the use of the DFT(B3LYP)/6-31G(d,p)
geometries. The simulated UV–Vis spectra of the studied chalcones are presented in Figure 9, while
the spectroscopic parameters of the electronic transitions to the three low-lying singlet excited states
are reported in Table S2.
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Figure 8. The DFT(B3LYP)/6-31G(d,p)/PCM optimized geometries of the chalcones: (a) 2′-OH chalcone
(derived from F); (b) 2-OH chalcone (derived from 2′HF); (c) 5′-OH chalcone (derived from 6HF);
(d) 4′-OH chalcone (derived from 7HF). The atom numbering is presented for 2′-OH chalcone (derived
from F); the same is for 2-OH chalcone, 5′-OH chalcone and 4′-OH chalcone. (Gaussian 09 and
GaussView 5.0.8 Paint/Windows 10; Microsoft Office PowerPoint 2007 software).

Table 4. The selected geometrical parameters of the most stable structures of the studied chalcones.
The atom numbering is the same as for 2′-OH chalcone in Figure 8a.

Compound C2′C1′Cα [◦] CαCβC1C2 [◦] O2′ . . . O [Å] O2′H . . . O [◦]

2′ OH chalcone (from F) 180.00 −179.99 2.52 150.81
2′ OH chalcone (from F) 179.90 −177.15 2.52 146.53

exp. Data 3 173.48 −174.67 2.53 149.76
2-OH chalcone (from 2′HF) −179.82 −179.02 2.51 151.15
5′ OH chalcone (from 6HF) −179.99 −179.98 2.52 150.51
4′ OH chalcone (from 7HF) 180.0 −179.97 2.51 151.74
3 Geometrical parameters taken from crystallographic structures deposited at The Cambridge Crystallographic Data
Centre (CCDC) [40]; deposition number 1815949 [16].

In the case of the chalcone formed from 7HF the results of calculations showed quite good
agreement of the lowest energy absorption band with the experimental data: the long wavelength
absorption band of the chalcone formed from 7HF with maximum at 358 nm corresponds to the
computationally predicted maximum at around 360 nm (Figure 9). The applied theoretical model
overestimated the S0→S1 excitation energies for chalcones derived from F and 2′HF. The experimentally
obtained maxima of the long wavelength absorption band of F and 2′HF at pH 11 are located at 410 and
425 nm, respectively, whereas the TD DFT model predicted that the maxima of the long wavelength
absorption are located at around 355 and 390 nm for chalcones of F and 2′HF, respectively (Figure 9).
This discrepancy between theoretical and experimental data may be rationalized by the limitation
of the applied B3LYP functional in the theoretical description of molecular system with extended π
electron delocalization [26]. Moreover, in the applied TD DFT model only electronic transitions to the
excited state Franck-Condon states (without any changes in the ground state geometry upon excitation)
are considered. The ground-state geometries of 2′hydroxychalcones are planar and this planarity
is related with the formation of the intramolecular hydrogen bond between O2′ –H and carbonyl
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oxygen. This hydrogen bond is weakened upon excitation and the molecule geometry becomes
twisted [16]. There is a possibility of the occurrence of intramolecular proton transfer processes leading
to formation of phototautomers. The theoretically predicted long-wavelength band of 2′OH chalcone
arises from S0→S1 and S0→S2 electronic transitions located at (3.211 eV) 386.13 and (3.604 eV) 343.
99 nm. These excitation energies are underestimated as compared to the previously [16] calculated
(using TD DFT(M062X) method) values for this compound (3.32 eV (373 nm) and 3.36 eV (369 nm) for
S0→S1 and S0→S2 electronic transitions, respectively).Molecules 2019, 24, x FOR PEER REVIEW 14 of 26 
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Figure 9. The simulated UV–Vis spectra of the chalcones: 2 OH chalcone (2′HF), 5′ OH chalcone (6HF),
4′ OH chalcone (7HF) and 2′ OH chalcone (F). (Gaussian 09 and GaussView 5.0.8; Origin(Pro) software).

In the case of chalcone of 6HF, the theoretically predicted S0→S1 transition located at 447 nm may
be attributed to the experimental long-wavelength maximum of 6HF in solutions of pH 11 located at
398 nm; while the experimental short-wavelength band with the maximum at 304 nm may correspond
to the theoretically predicted S0→S3 transition located at 311 nm. The applied theoretical model
generated lower excitation energies and caused underestimation. It may be explained by the fact that
no specific hydrogen bonding solute–solvent interactions (which are of a great importance for 6HF)
were taken into account within the applied theoretical model.

The calculations showed that the long wavelength S0→S1 transition of the chalcones under study
is a HOMO→LUMO transition, while the S0→S2 transition is predominantly the HOMO-1→LUMO.
The graphical representation of the frontier orbitals (HOMO, LUMO) of the studied chalcones is
included in Figure 10.

It can be seen that the frontier orbitals of the chalcones under study with the exception of the
HOMO orbital of 5′-OH chalcone (derived from 6HF) are mainly delocalized on the whole molecule.
Comparing the calculated values of the quantum chemical descriptors (IP values, HOMO-LUMO
energy gap; see Table S3) it may be suggested that the chalcone derived from 6HF should exhibit better
antioxidant activity. Based on the determined IP values the predicted antioxidant activity order might
be represented as follows: 5′OH chalcone (from 6HF)>2-OH chalcone (from 2′HF)>4′OH chalcone
(from 7 HF)>2′OH chalcone (from F).



Molecules 2019, 24, 3049 15 of 26

Molecules 2019, 24, x FOR PEER REVIEW 15 of 26 

 

  

   

 

   
  

Figure 10. The graphical representation of frontier orbitals of the chalcones derived from F, 2’HF, 
6HF and 7HF. (Gaussian 09 and GaussView 5.0.8; Paint/Windows 10; Microsoft Office PowerPoint 
2007 software). 

It can be seen that the frontier orbitals of the chalcones under study with the exception of the 
HOMO orbital of 5’-OH chalcone (derived from 6HF) are mainly delocalized on the whole molecule. 
Comparing the calculated values of the quantum chemical descriptors (IP values, HOMO-LUMO 
energy gap; see Table S3) it may be suggested that the chalcone derived from 6HF should exhibit 
better antioxidant activity. Based on the determined IP values the predicted antioxidant activity 
order might be represented as follows: 5’OH chalcone (from 6HF)>2-OH chalcone (from 2’HF)>4’OH 
chalcone (from 7 HF)>2’OH chalcone (from F). 

2.3. Cyclic Voltammetry 

Cyclic voltammetry responses were recorded at a Pt disk electrode at a potential scan rate of 100 
mV/s. An example of a voltamogram is given in Figure S2. All responses show broad and poorly 

Figure 10. The graphical representation of frontier orbitals of the chalcones derived from F, 2′HF, 6HF
and 7HF. (Gaussian 09 and GaussView 5.0.8; Paint/Windows 10; Microsoft Office PowerPoint 2007
software).

2.3. Cyclic Voltammetry

Cyclic voltammetry responses were recorded at a Pt disk electrode at a potential scan rate of
100 mV/s. An example of a voltamogram is given in Figure S2. All responses show broad and poorly
reproducible oxidation processes in the range 0.7–1.1 V, with an associated reduction process between
0.2 and −0.3 V. Experiment performed at potential scan rates between 10 and 100 mV/s indicates an
increase of the anodic peak current and a shift towards more positive potential values, implying a
diffusion controlled and a no-reversible electron transfer process, probably followed by a chemical
reaction (Figure S2). Such a result substantiates the specific structure of the flavanones here investigated,
containing only a hydroxyl substituent in different positions of rings A or B. In fact, the redox behavior
of flavanone’s analogues, as well as the corresponding flavonols (containing a double bond between
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atoms C2 and C3), indicates usually a two-electron process associable to the presence of hydroxyl
groups in orto- or para-positions on the aromatic rings A or B, mainly responsible of their antioxidant
activity [46]. According to computational results here reported, as well as literature data on analogues
of flavones [47] we could reasonably predict a higher antioxidant activity of 6HF than 7HF, 2′HF and
non-substituted flavanone F.

2.4. Acid–Base Profiles of Flavanones Derived from Potentiometric Titration

The acid dissociation constant (pKa) is one of the most commonly used physicochemical parameters,
and its determination is the subject of interest in a wide range of scientific areas. The dissociation
constant is of broad importance in biological systems, in synthetic chemistry, and pharmacology [48].
In this study, the pKa values of three flavanones 6HF, 7HF and 2′HF have been determined in
methanol–water binary mixture (40%/60% v/v) by potentiometric methodology. Measurable quantities
of isomers i.e., flavanone/its hydroxyl-derivative—chalcone have been found in solutions containing
6HF, 7HF, 2′HF within a pH range of 10.5 to 13.

A Binary solvent such as a methanol/water mixture was chosen due to its lower polarity than
pure water, while having a similar environment. The pKa value at one unique methanol/water mixture
is recommended because it is faster and simpler with respect to others for example to the classical
Yasuda–Shedlovsky plot [49]. Therefore, a mixed solvent with a ratio of 40%:60% v/v of methanol/water
was used in these studies. Such a ratio is recommended by some authors as the least error-prone
of mixed solvents because of a greater accumulation of information about the behavior of the glass
electrode in this solvent [50]. The pKa values of 6HF, 7HF, 2′HF obtained in this medium have been
compared with those given in the literature, and also with the values predicted by the DFT calculations.
Potentiometric methodology has allowed estimating proton ionization constants of hydroxychalcones
although the values determined should be considered carefully due to the electrode error in very high
pH range. The results of the determined pKa are summarized in Table 5 (examples of titration curves
are attached in Supplementary Data, Figure S3).

Table 5. Summary of the pKa values for the flavanones studied (the estimated standard deviations are
given in parentheses).

Compound Deprotonation Group This Work
Literature Values

Experimental Theoretical

6HF 6-OH 9.24 (±0.03) 13.43 9.90 [51]
5′-OH chalcone 10.65 (±0.05) 15.05 –

7HF 7-OH 7.85 (±0.02) 8.28 7.26 [37]; 7.30 [51]
4′-OH chalcone 10.78 (±0.04) 8.85 ca. 11.2 [37]

2′HF 2′-OH 10.90 (±0.04) 11.92 –
2-OH chalcone 11.50 (±0.05) 9.86 –

The flavanones show different pKa values. The determined pKa values result from different
molecular geometries and differences in charge density distributed in the rings. The deprotonation
of 6-OH group is more difficult in 6HF due to possible interaction with water molecules through
formation of hydrogen bonds. Examination of the geometry of 6HF revealed an impact of water
molecules in formation of linkage of hydrogen bonds between 6-OH and oxygen carbonyl in aqueous
solution. The formation of the bonds hinders the deprotonation of the 6-OH group. Therefore, this
group releases a proton at higher pH and the resulting pKa value is higher. On the other hand, in the
case of 7HF the molecular structure (lack of CO group in proximity) promotes deprotonation of the
7-OH group at lower pH and, therefore, the pKa value of this group is much lower compared to other
monohydroxy flavanones. In the case of 2′HF, the hydroxy group is localized in aromatic B ring
which is unconjugated with A and C rings due to lack a double bond between C2 and C3. It leads to
charge localization in this ring and the consequence is stronger attraction of hydrogen in 2′-OH group.
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Therefore, the group releases proton at high pH region with relatively high pKa value. Representations
of protonated/deprotonated forms of 6HF, 7HF, 2′HF are shown in species distribution diagrams
(Figure 11). The presence of species was found according to methodology described elsewhere [52].
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Figure 11. Species distribution diagram showing the species of (a) 7HF, (b) 2′HF and (c) 6HF formed
as a function of pH. All reactants are 1 × 10−3 M in concentration.

One can see from the diagrams that the protonated and partially deprotonated (in ca. 20%) forms
of 7HF and the fully protonated forms of 6HF and 2′HF dominate at neutral pH region. Domination
of mono-deprotonated HL-form of all flavanones prevails in basic region. Chalconate anions can
be present above pH 12. It is clearly seen comparing species distribution diagrams that different
forms of the 6HF, 7HF and 2′HF (protonated or deorotonated) can participate in biological action at
physiological pH. Hence one can predict bioavailable forms of the compounds in physiological fluids.
The pKa values obtained in this work that are attributed to 6HF, 7HF, 2′HF or their corresponding
chalcones show differences with comparison to those reported in literature. This is due to the fact that
various applied methodologies of measurements and calculations usually provide different results.
However, it should be considered that potentiometry gives good accuracy and precision because the
electrode system is calibrated before each potentiometric titration and the electrode remains into the
solution during all the titration, so that the calibration parameters are the same for all titration data
corresponding to the same experimental run [48].

The theoretically predicted pKa values for 7 HF and 2′HF are in a quite good agreement with those
resulting from experiments. Surprisingly, the applied theoretical model considerably overestimated
the pKa value for 6HF. The same tendency was observed in the theoretically predicted proton affinities
calculated from the DFT(B3LYP)/6-31G(d,p)/PCM enthalpies for neutral and anionic form of flavanones:
58.826, 61.400 and 52.989 kcal/mol for 2′HF, 6HF and 7HF, respectively (enthalpy of proton taken
from [53], solvation enthalpy of proton in water taken from [54]). This theoretical prediction is
contradictory to both the experimental results and the literature data which clearly showed that the
proton of 6-OH group has more acidic character. Since no specific solute-solvent interactions (which
seem to be crucial in the acid–base equilibria of 6HF) are taken under consideration of the applied
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theoretical model, the calculated pKa value for this flavanone is substantially different in comparison
to the others. Moreover, the pKa value of an acid group in a molecule could be estimated as the sum
of two terms, the first corresponding to the pKa of the acid group or reaction center, and the second
indicates the change in the ionization behavior as consequence of a perturber structure, meaning any
molecular structure appended to acid group. The second term is factored into mechanistic components,
describing the differential resonance, electrostatic, solvation and hydrogen bonding of perturber
structure with the protonated and unprotonated states of acidic group, respectively. In our model, not
all factors were included, which in turn could have led to an overestimated value compared to that of
experimental one.

2.5. Absorption Spectroscopic Measurements of DNA

The interactions between small molecules and DNA are commonly investigated by electronic
absorption spectroscopy since binding to the macromolecule leads to changes in the electronic
spectrum [55]. The interaction of F, 2′HF, 6HF and 7HF with CT DNA was studied keeping the
concentration of respective flavanone fixed and adding DNA in aliquots of required amount up to a
concentration of 3.32 × 10−5 M. An increase in absorbance has been observed for F, 2′HF and 6HF. In
the case of 7HF hypochromism is clearly seen in the spectra (Table 6). The values of the Kb intrinsic
constants determined from the Wolfe–Shimer diagrams are in Table 6.

The appearance of isosbestic point in the spectrum of 7HF may indicate that: (i) the compound
binds to DNA in a single mode, (ii) the presence of a new species formed during the interaction, (iii) it
enables the assumption of two-state system consisting of bound and free 7-hydroxyflavanone species
in the binding process that are in equilibrium [56,57].

Table 6. Spectra, Kb DNA intrinsic binding constants and the Wolfe-Shimer diagrams of flavanones
(The plots were prepared with Origin(Pro) software using the original files from the instrument:
Perkin-Elmer Lambda 11 spectrophotometer). Concentration of CT DNA (Tris) from 1.91 to 6.58 µM for
6HF, 2.3 to 33.2 µM for 7HF, and 4 to 10 µM for F and 2′HF.

Spectrum Wolfe-Shimer Diagram Kb [M−1]
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The both effects hyperchromism and hypochromism occur without shifts of λmax. Such spectral
profiles indicate weak interactions with CT DNA [58]. This is also confirmed by the values of Kb

intrinsic binding constants of the flavanones (Table 6). Slight differences between them point out
a similar mode of interaction which may be electrostatic or hydrogen bonding [59]. The values of
the Kb intrinsic constants are in the following order 7HF (4.81 × 104 M−1)>2′HF (4.65 × 104 M−1)>
F (4.58 × 104 M−1)>6HF (4 × 104 M−1) and demonstrate weak interaction with CT DNA. They are close
to each other, although in the case of 7HF the observed changes in the spectrum may signify a greater
affinity for DNA compared to the others. Weak interactions with CT DNA indicate that the anti-tumor
activity of these flavanones is unlikely to occur by destroying the structure of DNA, but rather through
their interaction with cancer cell components such as enzymes. Enzyme inactivation revealed in the
cytotoxic activity of 6HF and 2′HF [reported in [9,10] seems to confirm this conclusion.

3. Materials and Methods

3.1. Reagents

The racemic flavanone, 2′-, 6-, 7-hydroxyflavanones, NaOH, NaCl, KNO3, HNO3, HCl methanol
(CH3OH) and all other compounds were purchased from Sigma-Aldrich Co. (Poznań, Poland).
All reagents were of analytical quality and were used without further purification.

3.2. Electrochemical Measurements

3.2.1. Potentiometry

There are several methods for the determination of dissociation constants. Traditionally,
potentiometry has been the most useful technique for the determination of equilibrium constants [60,61]
because of its accuracy and reproducibility. Moreover, the use of computer programs for the
refinement of equilibrium constants allows the different pKa values of polyprotic substances to be
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determined, even when they are very close [62]. In order to overcome the lack of information
related with the acid–base equilibria of monohydrated flavanones, the pKa values of 6-hydroxy-,
7-hydroxy- and 2′-hydroxyflavanones have been determined by means of potentiometric measurements
in methanol–water binary mixture. To determine pKa values, emf (electromotive force) was
measured with a precision of ±0.1 mV, using an automated system Molspin pHmeter (Molspin
Ltd., Newcastle-upon-Tyne, UK) equipped with a digitally operated syringe (the Molspin DSI 0.250 mL)
controlled by a PC computer, using a Russel CMAWL/S7 semi-micro combined electrode. The titrations
were done with carbonate-free NaOH solution of accurately known concentration (ca. 0.1 M). The
concentrations of the base and HCl or HNO3 solutions were determined by pH-potentiometric titrations.
The electrode system was calibrated according to Irving et al. [63]. The pH-metric readings could,
therefore, be converted into hydrogen-ion concentrations. The average water-ionization constant,
pKw was 13.78 ± 0.05 with methanol/water (40%/60%, v/v) as solvent [64]. This value is similar to
that presented in the literature (pKw = 13.71) [65]. A slight difference results from the use of different
measurement conditions as well as the assumptions made in the calculation. The samples were
deoxygenated by bubbling purified argon for ca. 10 min prior to the measurements, as well as during
the titrations. The pH-metric titrations were carried out in the pH range 2.0–12.0 and the initial volume
of the samples was 2.0 mL. The flavanones’ concentration was 1 × 10−3 M. The flavanones’ stock
solutions were determined by the Gran’s method [66]. The accepted fitting of the titration curves was
always less than 0.01 mL. The number of experimental points was within 100–150 for each titration
curve. The reproducibility of the titration points included in the evaluation was within 0.005 pH
units in the whole pH range examined. Dissociation constants of hydroxyl groups of flavanones were
evaluated by iterative non-linear least squares fit of the potentiometric equilibrium curves through
mass balance equations for all the components, expressed in terms of known and unknown equilibrium
constants using the computer program SUPERQUAD [67]. The value obtained for sigma (the root
mean squared weighted residual), after refinement of the stability constants, was ≤1, which means that
the data was fitted within experimental error. The equilibrium constants reported in this work were
obtained from fittings that used three titration curves simultaneously (examples of titration curves are
included in Figure S1.

3.2.2. Cyclic Voltammetry

Cyclic voltammetry tests were performed in a three-electrode single-compartment cell. Working,
counter and reference electrodes were a Pt disk (diameter 2 mm), a Pt gauze, and aqueous Ag/AgCl
(KCl 3M), respectively. A proper amount of a MeOH solution of each flavanone was added in 5 mL
of an aqueous saline phosphate buffer solution pH 7.4 (a 1 L aqueous solution contains NaCl 8.00 g,
KCl 0.20 g, Na2HPO4·2 H2O 1.44 g, KH2PO4 0.24 g). Oxygen was removed by flowing Ar through the
solution before each experiment, and Ar flow was kept over solutions during the voltammetric tests.

3.3. UV–Vis Spectrophotometric Experiments

UV–Vis spectrophotometric pH titrations were carried out with solutions containing 2 × 10−5 M
of flavanone, 6-hydroxyflavanone, 7-hydroxyflavone and 2′-hydroxyflavanone), 6.25 × 10−3 M HNO3

or HCl, 0.1 M NaCl and 0.5% of DMSO by using a Perkin-Elmer Lambda 11 spectrophotometer in the
λ interval 200–900 nm. Solutions were inserted in a quartz cell with a path length of 1 cm. The same
apparatus was used in DNA experiments.

Deoxyribonucleic acid sodium salt from Calf Thymus DNA (CT DNA) was purchased from Sigma
(#D3664). The concentration of CT DNA was determined from the absorption intensity at 260 nm
with ε value of 6600 M−1 cm−1. A Tris buffer (5 mM Tris-HCl, 50 mM NaCl, pH 7.2) was used and
UV–Vis spectra were recorded after each addition of concentrated CT DNA stock to 25 µM solutions of
flavanones in a quartz cuvette (path length = 1 cm), at 25 ◦C. The binding ability of molecules with CT
DNA can be estimated through the Kb intrinsic binding constant, which was obtained by monitoring
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the λmax with increasing concentrations of CT DNA. The Kb values are given by the ratio of slope to
the y intercept in plots [DNA]/(εA − εf) versus [DNA], according to the Wolfe–Shimer equation:

[DNA]/(εA − εf) = [DNA]/(εb − εf) + 1/(Kb(εb − εf)) (1)

where [DNA] is the concentration of DNA in base pairs, εA = Aobsd/[compound], εf = the extinction
coefficient for the free compound and εb = the extinction coefficient for the compound in the fully
bound form [68].

3.4. Computational Methods and Softwares

All calculations were performed using the Gaussian 09 [38] and GaussView 05 software
package [39]. Geometry optimization of the studied compounds has been performed with the
use of DFT applying the hybrid B3LYP functional [20–22] and the 6-31G(d,p) basis set. Solvent effects
(water) have been included in the optimization calculations within the framework of Polarizable
Solvation Model (PCM). Vibrational frequency calculations (at the same level of theory) have been
carried out (optimization with the opt+freq DFT(B3LYP)/6-31G(d,p)/ PCM (water) keyword with the
default Berny algorithm [69]). No imaginary vibrational frequency has been found which indicated
that the optimized geometries corresponded to the local minima on the potential energy hypersurface.

The ionization potential IP and electron affinity EA values were calculated by orbital energy
method (according to Koopmann’s theorem): IP = −EHOMO, EA = −ELUMO. Energies of the HOMO
and LUMO orbitals were calculated using DFT(B3LYP)/6-31G(d,p)/PCM (water) method. Ionization
potential IP is defined as the energy which is required to remove an electron, while electron affinity
EA is the energy released when the electron is added. Having the IP and EA, the quantum chemical
descriptors (electronegativity χ, hardness η, softness S, chemical potential µ, and electrophilicity index
ω) were calculated according to the following formulas:

χ =
IP + EA

2
(2)

ω =
µ2

2η
(3)

S =
1

2η
(4)

η =
IP− EA

2
(5)

µ = −χ (6)

Hardness η describes the resistance to charge transfer, while the inverse of hardness is given by
softness S [70]. Electronegativity χ is the measure of the tendency to attract bonded electron pairs;
while the electrophilicity index ω describes the affinity of electrons [71]. Chemical potential is the
measure of tendency of an electron to escape from equilibrium [72].

The UV–Vis spectra and the spectroscopic parameters of the electronic transitions to the
lowest excited singlet states have been obtained from the TD (nstates = 10) DFT(B3LYP)/6-31+

G(d,p)/PCM(water) calculations using the DFT(B3LYP)/6-31G(d,p)/PCM(water) optimized geometries.
The TD DFT (B3LYP)/6-31+G(d,p) calculations of the vertical excitations have been performed using
the ground state equilibrium geometries with the linear response, non-equilibrium solvation. The
reported results are for vertical transitions thus no change in geometry between the ground and excited
states has been included.

The pKa values were calculated based on the free Gibbs energy of the following reaction:
HF(s)→A(s)

− + H(s)
+ according to the well-known formula:
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pKa =
∆G∗a

RTln(10)
(7)

where
∆G∗a = G∗

(
A−
(s)

)
+ G∗

(
H+
(s)

)
−G∗
(
HF

(s)

)
(8)

and the subscript “(s)” indicates solvated species. Our preliminary calculations showed that extension
of basis set from 6-31G(d,p) to 6-31+G(d,p) had minor impact on the obtained geometries, however,
the use of 6-31+G(d,p) basis set gave better results in determining the pKa values. The total free

Gibbs energies of the neutral
(
G∗(HF

(s)

)
and anionic G∗

(
A−
(s)

)
forms of the studied flavanones at

standard conditions were calculated as the sum of the DFT(B3LYP)/6-31+G(d,p) calculated thermal
correction to free Gibbs energy (in the gas phase) and the DFT(B3LYP)/6-31+G(d,p)/PCM single point
electronic energy, similarly to the method previously proposed by Wright et al. [73] and Bryantsev
et al. [74]. Proton free enthalpy (energy) in water was calculated using the value −26.28 kJ/mol for
proton free energy in the gas phase [53] and the value of −267.9 kcal/mol for proton free energy of
solvation previously proposed by Bryantsev et al. [74]. The same procedure has been applied for the
determination of the pKa values for the chalcones under study.

The following software packages were used in this work: ChemDraw Version 15.0.0.106 PerkinElmer
Informatics [75]; Origin(Pro), Version 2007. OriginLab Corporation, Northampton, MA, USA [76].

4. Conclusions

The results of our research have shed some light on clarification of different biological activity
of the flavanones studied. As the spectral results both experimental and theoretical indicate the
compounds have revealed different susceptibility to microenvironment, i.e., to components of the
solution or changes in the concentration of hydrogen ions whose presence is of crucial importance
in cellular compartments. This is especially seen in spectral profiles of 6HF (Figure S2). This finding
correlates with its stronger cytotoxic effect compared to the other studied flavanones. It leads to the
conclusion that this compound can react with cell components, such as enzymes or apoptosis proteins.

Based on the calculated HOMO and LUMO energies, together with cyclic voltammetry data, it was
possible to make predictions of reactivity of 6HF, 2′HF 7HF and F. Analyzing the calculated quantum
chemical descriptors, it can be suggested that based on the lowest HOMO-LUMO gap and the lowest
IP, 6-hydroxyflavanone is expected to be the best antioxidant in this set of monohydroxy-flavanones.
Structure–activity relationships observed for antioxidant activity and DNA interactions suggest that
6-hydroxyflavanone can protect DNA against oxidative damage more effectively than flavanone,
2′-hydroxyflavanone or 7-hydroxyflavanone.

Weak interactions with CT DNA indicate that the anti-tumor activity of these flavanones is unlikely
to occur by destroying the structure of DNA, but rather through their interaction, e.g., with apoptotic
proteins in cancer cells.

To summarize, we have shown that even such subtle changes as altering the location of the OH
group from the C6 position to the C7 position in 6HF and 7HF, respectively, lead to significant changes
in the spectral profile, which means changes in the electronic structure of the flavanone rings, and this
is reflected in their biological activity.

Supplementary Materials: Figure S1: Absorption spectra of 2 × 10−5 M solutions of flavanone (F),
6-hydroxyflavanone (6-HF), 7-hydroxyflavone (7-HF) and 2′-hydroxyflavanone (2′-HF) at different pH. Figure
S2: CV response of a 1.3*10-3 M solution of 6-HF in aqueous saline phosphate buffer, pH 7.4. Potential scan rate:
100 mV/s. Blue line: 1st scan; yellow line: 2nd scan; green line: 3rd scan. Figure S3: Titration curves obtained
for monohydroxy flavanones: 2′-HF. 6-HF, 7-HF. Table S1: The relative stability of the two stereoisomers of
the studied flavanones as predicted by the DFT(B3LYP)/6-31G(d,p)/PCM model. Table S2: The TD (n states =
10) DFT(B3LYP)/6-31+G(d,p)/PCM calculated spectroscopic parameters (transition electric dipole moment (µ);
wavelength corresponding to the excitation energy (λ) and oscillator strength (f)) of the electronic transitions
to the three low-lying excited singlet states in the studied chalcones. Table S3: Quantum chemical descriptors
for chalcones derived from F, 2′HF, 6HF and 7HF (hardness (η); electronegativity (χ); chemical potential (µ);
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electrophilicity index (ω); softness (S)) calculated from ionization potential (IP) and electron affinity (EA) values,
which were estimated by orbital vertical method.
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