Учреждение образования «Брестский государственный университет имени А.С. Пушкина»

Менделеевские чтения 2019 г.

Сборник материалов Республиканской научно-практической конференции по химии и химическому образованию

Брест, 22 февраля 2019 года

Под общей редакцией Н.Ю. Колбас

Брест БрГУ имени А.С. Пушкина 2019 УДК 37+54+57+61+66+371+372+373+378+502+524+538+539+541+542+543+5 44+546+574+577+581+631+634+636+661+666+667+691 ББК 24.1+24.2+24.4+24.5 М 50

Рекомендовано редакционно-издательским советом Учреждения образования «Брестский государственный университет имени А.С. Пушкина»

Рецензенты:

кандидат технических наук, доцент С.В. Басов кандидат биологических наук, доцент Н.М. Матусевич

Редколлегия:

кандидат технических наук, доцент **Э.А. Тур** кандидат биологических наук, доцент **Н.Ю. Колбас** кандидат технических наук, доцент **Н.С. Ступень**

Под общей редакцией Н.Ю. Колбас

Менделеевские чтения 2019 : сб. материалов Республ. науч.-практ. конф. по химии и хим. образованию, Брест, 22 февр. 2019 г. / Брест. гос. ун-т им. А.С. Пушкина ; редкол.: Э. А. Тур, Н. Ю. Колбас, В. В, Коваленко; под общ. ред. Н. Ю. Колбас. – Брест : БрГУ, 2019. – 284 с.

В материалах сборника освещаются актуальные проблемы химии и экологии, а также отражен опыт преподавания соответствующих дисциплин в высших и средних учебных заведениях.

Материалы могут быть использованы научными работниками, аспирантами, магистрантами, преподавателями и студентами высших учебных заведений, учителями химии и другими специалистами системы образования.

Ответственность за языковое оформление и содержание статей несут авторы.

УДК 37+54+57+61+66+371+372+373+378+502+524+538+539+541+542+ 543+544+546+574+577+581+631+634+636+661+666+667+691 ББК 24.1+24.2+24.4+24.5

© УО «Брестский государственный университет имени А.С. Пушкина», 2019

И.А. ИЛЬЮЧИК, В.Н. НИКАНДРОВ

Беларусь, Пинск, ПолесГУ

О ПРОЯВЛЕНИИ «ФОСФАТНОГО ЭФФЕКТА» В ПРОТЕЛИЗЕ: РАСЩЕПЛЕНИЕ БЕЛКОВ ПРОТЕИНАЗАМИ КУЛЬТУРАЛЬНОЙ ЖИДКОСТИ ASPERGILLUS SP. В ПРИСУТСТВИИ НЕОРГАНИЧЕСКОГО ОРТОФОСФАТА

Как мы уже упоминали в предыдущей статье [1], ранее на очищенных энзимах, клетках животных и субклеточных фракциях печени и головного мозга было описано стимулирующее действие неорганического ортофосфата на реакции протеолиза (результаты обобщены в [2; 3]). Причем, судя по данным ингибиторного анализа, включая действие разобщающего агента — 2,4-динитрофенола и цианида, в ряде случаев этот эффект не связан с ресинтезом АТФ. Все эти факты дали основание выдвинуть представление о существовании независимого от ресинтеза АТФ пути стимуляции протеолиза неорганическим ортофосфатом — «фосфатного эффекта» в протеолизе [2; 3].

На культурах условно-патогенных микроорганизмов показано, что, в ряде случаев, в отсутствие неорганического фосфата выявление протеолитической активности невозможно [4].

При исследовании протеолитической активности низкоскоростного супернатанта гомогенатов клеток *Chlorella vulgaris* проявилась сложная концентрационная зависимость, демонстрирующая не только интенсификацию расщепления белков-субстратов на 58,6–122,7 %, но и его угнетения на 37 % [1]. Подобная картина в предыдущих исследованиях нами не была зафиксирована. Возможно, это обусловлено спецификой протеолитических систем фотосинтезирующего организма.

В связи с последним крайне необходимо исследование действия неорганического ортофосфата на протеолитическую активность сапрофитирующего организма, в качестве такового выбрана культура *Aspergillus sp*.

Род *Aspergillus* – один из самых больших и разнообразных родов грибов, играющих двоякую роль в биосфере.

Ряд видов продуцирует афлатоксины с высокой токсичностью и канцерогенностью и вызывают афлатоксикоз. В естественных условиях к аспергиллезу наиболее восприимчивы индейки, куры, цесарки, водоплавающая птица, лошади, крупный рогатый скот, овцы, собаки, свиньи, кролики, морские свинки. Плесневые микозы (в т.ч. легких) наиболее часто встречаются и у работников пивоваренных заводов, грузчиков зерновых культур, мукомолов, рабочих силикатной промышленности, ткацких, шпагатно-веревочных фабрик и др. От больных с различными клиническими формами аспергиллеза выделено более 40 видов этого рода. Инвазивные же микозы (в том числе вызванные грибами рода Aspergillus spp.), отличающиеся тяжелым течением и высокой летальностью, в настоящее время остаются актуальной клинической проблемой [5–7].

С дугой стороны, в истории промышленного использования грибов аспергиллы имели, и по сей день имеют большое значение при производстве соевого соуса, энзимов. Протеазы аспергиллов предлагают применять для размягчения мяса, для получения гидролизатов отходов мясной промышленности, в качестве компонентов лекарств и моющих средств [8].

Целью настоящей работы явилось выявление влияние неорганического ортофосфата *in vitro* на расщепление белков протеиназами культуральной жидкости *Aspergillus sp*.

Материалы и методы исследования. В работе использовали гемоглобин быка и фибриноген человека («Sigma», США), казеин по Гаммерстену (Россия), желатин («Fluka», Германия), бактоагар («Melford», США), другие реактивы были производства стран СНГ марки «хч».

Культура *Aspergillus sp*. (выделен из зерна) и питательные среды любезно предоставлены канд. биол. наук, доцентом Е.О. Юрченко.

Гриб выращивали на питательных средах, приготовленных на основе куриного мяса: измельченное куриное мясо настаивали в 2 частях холодной

воды 24 час, жидкость отфильтровывали, кипятили с последующей фильтрацией и доводили водой до исходного объема (мясная вода, MB). Во втором варианте к MB добавляли 10 г/л казеинового пептона («Roth», Германия) — это вариант мясо-пептонного бульона ($M\Pi E$). Среды подвергали автоклавированию при 121 °C в течение 20 мин.

Питательную среду инокулировали в виде блока 0,25 см² из старой, обильно спороносящей культуры аспергилла на агаре. Гриб культивировали в 250 мл колбах, содержащих 100 мл среды, в течение 7 суток на качалке (70 об/мин) при 30 °C. По окончании культивирования мицелий удаляли, культуральную жидкость центрифугировали 10 мин при 4500 об/мин и 4 °C. Полученный супернатант использовали для анализа.

Протеолитическую активность полученных супернатантов клеток *Ch. vulgaris* определяли по расщеплению гемоглобина или фибриногена в тонком слое агарового геля как подробно описано ранее [9].

В качестве растворителя при приготовлении белок-агаровых пластин на первом этапе использовали трис-HCl буфер и фосфатный буфер рН 7,4. В дальнейшем пластины готовили на 0,15 М растворе NaCl. В опытные варианты к нему добавляли фосфатный буфер рН 7,4 до конечной концентрации 0,001–0,060 М. В контрольный вариант фосфаты не вносили.

Все эксперименты выполнены не менее чем четырехкратно, результаты обработаны статистически.

Результаты и их обсуждение. Прежде всего, установлено, что протеолитическая активность культуральной жидкости сильнее при использовании в качестве среды *МПБ*, что обусловлено более богатым составом этой среды. Более того, на *МВ* не образуются протеиназы, расщепляющие казеин и гемоглобин (таблица 1). Образование же энзимов, расщепляющих фибриноген и желатин, на *МПБ* идет интенсивнее в 1,5–2,4 раза.

Таблица 1 — Расщепление белков-субстратов культуральной жидкостью *Aspergillus sp.* при росте на двух питательных средах (n = 4)

	Площадь зон лизиса белков, мм ²							
Растворитель	каз	еина	фибри	ногена	гемоглобина		жела	гина
	MB	МПБ	MB	МПБ	MB	МПБ	MB	МПБ
0,1 М трис-НС1 буфер рН 7,4	0	0	21,5 ± 1,3	52,5 ± 1,9	0	27,1 ± 1,5	30,1 ± 0,8	45,2 ± 1,2
0,06 М фосфат- ный буфер рН 7,4	0	86,5 ± 1,9	24,6 ± 0,9	58,0 ± 2,6	0	35,0 ± 1,3	39,7 ± 1,8	65,0 ± 2,0

Добавление в реакционную систему неорганического ортофосфата увеличивало эту активность. Так, в присутствии эффектора проявилась даже

казеинолитическая активность культуральной жидкости, а при расщеплении желатина и гемоглобина она возросла на 30 %. И лишь в случае фибриногена сдвиги были небольшими. Это была «точечная» концентрация ортофосфата, тогда как эффект последнего зависит от используемого белка субстрата, а границы выраженного эффекта не совпадают [10].

Дальнейшие исследования расщепления фибриногена или желатина в присутствии 0,001—0,060 М ортофосфата показали, что при росте на *МВ* лизис фибриногена культуральной жидкостью проявлялся лишь при добавлении ортофосфата с максимумом эффекта при концентрации 0,006—0,009 М, что в 1,5—2,4 раза превышало влияние соли в иных концентрациях (таблица 2). При росте гриба на *МПБ* лизис фибриногена культуральной жидкостью мало чувствителен к добавкам эффектора: изменения не более 10 %.

Расщепление же желатина возрастало на 41 и 79 % в присутствии 0.045-0.060 М ортофосфата и росте продуцента на MB и на 29-109 % в присутствии 0.006-0.045 М эффектора при росте его на $M\Pi B$ (таблица 2, рисунок). Небольшое угнетение лизиса желатина наблюдалось только на культуральной жидкости, полученной при выращивании аспергиллов на среде MB (более бедной по составу). Однако величина угнетения не превысила 15 % и проявилась лишь при концентрации эффектора 0.001-0.006 М.

Таблица 2 — Расщепление белков-субстратов в присутствии ионов неорганического ортофосфата культуральной жидкостью *Aspergillus sp.* при росте на двух питательных средах (n = 12)

TC	Площадь зон лизиса белков, мм ²					
Концентрация ортофосфата, М	фибри	иногена	желатина			
ορτοφοεφατα, τνι	MB	МПБ	MB	МПБ		
Контроль (без						
добавок)	0,00	$57,66 \pm 2,06$	$29,60 \pm 1,84$	$58,11 \pm 1,79$		
0,060	$16,98 \pm 0,45*$	$60,90 \pm 3,96$	$41,82 \pm 2,59*$	$68,66 \pm 2,13*$		
0,045	$21,38 \pm 1,19*$	$52,50 \pm 2,85$	$53,11 \pm 1,20*$	$75,98 \pm 2,14*$		
0,030	$24,34 \pm 1,26*$	$63,08 \pm 3,46$	$34,41 \pm 1,29*$	121,41± 5,00*		
0,015	$19,77 \pm 1,20*$	$59,94 \pm 5,44$	$29,91 \pm 1,69$	84,45 ± 3,75*		
0,009	$37,19 \pm 1,25*$	$61,35 \pm 3,26$	$29,83 \pm 0,71$	76,92± 3,42*		
0,006	$38,31 \pm 2,27*$	$58,34 \pm 2,45$	$25,12 \pm 1,19$	$74,84 \pm 1,57*$		
0,003	$25,94 \pm 1,42*$	$60,05 \pm 2,02$	$25,45 \pm 1,25$	$63,15 \pm 3,35$		
0,001	0,00	$61,06 \pm 3,11$	$26,48 \pm 1,62$	$52,14 \pm 2,00$		

Примечание: * — изменения статистически достоверны при $P \le 0.05$

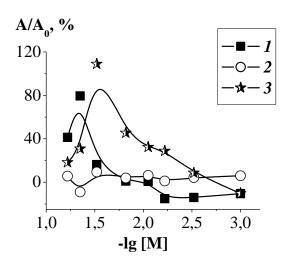


Рисунок – Изменения интенсивности (% к контролю, принятому за 100 %) расщепления желатина (1 и 3) и фибриногена (2) в присутствии неорганического ортофосфата культуральной жидкостью Aspergillus sp. при росте на МВ (1) или МПБ (2 и 3)

Следовательно, при изучении протеолитической активности культуральной жидкости выделенного из зерна Aspergillus sp. эффект добавления в реакционную систему неорганического ортофосфата принципиально не отличался от описанного ранее в упомянутых выше статьях [2; 3; 10]. В частности, как и ранее, было показано, что в присутствии неорганического фосфата протеолитическая активность возрастает. Этот эффект зависит не только от концентрации фосфата, но и от используемого белка-субстрата. В случае с культуральной жидкостью аспергилла также не проявилась та сложная трехфазная картина изменений, которая отмечена нами при исследовании протеолитической активности хлореллы. Вероятно, последняя обусловлена метаболической спецификой фотосинтезирующего организма.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Никандров, В. Н. Физико-химические особенности реализации протеолитических процессов клетки *Chlorella vulgaris* / В. Н. Никандров, И. А. Ильючик // Актуальные вопросы биологической физики и химии. 2018. Т. 3, № 3. С. 654—665.
- 2. Nikandrov, V. N. Some unusual manifestation of proteolysis / V. N. Nikandrov, N. S. Pyzhova // Cell. and Mol. Biology. -2006. Vol. 52, No 4. P. 30–39.
- 3. Никандров, В. Н. Нетривиальные проявления протеолиза на молекулярном и клеточном уровнях, их фундаментальное и прикладное значение / В. Н. Никандров, Н. С. Пыжова // Новости мед.-биол. наук − 2010. − Т. 2, № 3. − С. 14–28.

- 4. Пыжова, Н. С. Особенности набора «нейтральных» протеиназ патогенных штаммов *Pseudomonas aeruginosa* / Н. С. Пыжова, В. Н. Никандров // «Современные проблемы инфекционной патологии человека. Сб. научн. трудов». Вып. 7. Минск : РНПЦЭиМ, 2014. С. 216–223.
- 5. Инфекционные болезни животных / Б. Ф. Бессарабов [и др.]; под ред. А. А. Сидорчука. М. : Колос, 2007. 671 с.
- 6. Воробьев, А. А. Медицинская и санитарная микробиология : учеб. пособие / А. А. Воробьев, Ю. С. Кривошеий, В. П. Широбоков. М. : Издательский центр «Академия», 2003. 464 с.
- 7. Инвазивный аспергиллез: результаты многоцентрового исследования / Н. Н. Климко, О. В. Шадривова, С. Н. Хостелиди и др. // Онкогематология. -2014. -№ 2. С. 13-19.
- 8. Юрченко, Е. О. Выделение протеолитических ферментов из грибов рода *Aspergillus* / Е. О. Юрченко // Биотехнология: достижения и перспективы развития: сб. материалов I междунар. научно-практ. конф., Пинск, 25—26 сентября 2014 г. / Полесский гос. Университет; редкол.: К. К. Шебеко [и др.]. Пинск: ПолесГУ, 2014. С. 125—129.
- 9. Никандров, В. Н. Методы исследования протеолиза / В. Н. Никандров, Н. С. Пыжова // Современные проблемы биохимии. Методы исследований: учеб. пособие / Е. В. Барковский [и др.]; под ред. А. А. Чиркина. Минск: Выш. шк. 2013. Гл. 5. С. 132—157.
- 10. Пыжова, Н. С. Влияние биогенных фосфатов на расщепление белков протеиназами и функцию активаторов плазминогена / Н. С. Пыжова, В. Н. Никандров // Биоорг. химия. -2008. Т. 34, № 3. С. 382-391.

СОДЕРЖАНИЕ

НАУЧНЫЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ ХИМИИ

Артемук Е.Г., Мариневич А.А. Брассиностероиды и антистрессовая	
устойчивость пшеницы озимой в условиях токсических концентраций	
ионов кадмия	5
Банько Д.Н., Кац П.Б. Методы вычисления моттовской поправки	
в формуле Бете-Блоха	8
Барковская М.М. Коррозионная стойкость вакуумно-дуговых покрытий	
TiN и CrN в солевой среде	11
Басов С.В., Тур Э.А., Гнатык С.П. Информационная емкость	
и сохраняемость галогенсеребряных фильмовым материалов	16
Башкиров Л. А., Дудчик Г. П., Великанова И. А., Глинская А. А.	
Синтез новых сегнетомагнетиков на основе феррита висмута ВіFeO ₃	
со структурой перовскита с использованием в качестве прекурсоров	
ферритов висмута других структур	21
Беляева Л.А., Бардукова Н.А., Соболева Е.И. Особенности	
катионного и анионного состава природных вод реки Днепр	
Брагинского района	25
Беляева Л.А., Соболева Е.И. Изучение анионного и катионного	
состава подземных вод наблюдательских скважин г. Бобруйска	28
Богославец Н.М., Челядин Л.И., Медвидь М.И. Технологии физико-	
химической очистки сточных вод	31
Бойко В.И . Использование кристаллических структур в целях	
диагностики представителей семейства Ericaceae Juss	36
Гвоздева Н.А., Радченко С.Л., Новикова Л.Н. Энергосберегающий	
синтез керамических пигментов со структурой шпинели	39
Головкова А.С., Седакова В.А. Определение спонтанной	
люминесценции в образцах опухолевой ткани различной	
локализации	43
Грапов А.А., Беляева Л.А. Изучение возможностей	
концентрирования отдельных элементов из природных рассолов	
припятского прогиба	47
Демидчик А.В. Формирование структуры фольг сплава $Bi_{0,89}Sb_{0,11}$,	
полученных спиннингованием	51
Домась А.С. Фракционный состав гумуса дерново-карбонатных почв	
Брестского полесья	55
Жук О.О., Ступень Н.С. Мониторинг утилизации твердых бытовых	
отходов в Брестской области	58
<i>Ильючик И.А., Никандров В.Н.</i> О проявлении «фосфатного эффекта»	

в протелизе: расщепление белков протеиназамикультуральной жидкости
Aspergillus Sp. в присутствии неорганического ортофосфата
Кац П.Б., Билькевич А.М. Расчет ядерной тормозной способности
и неионизационных потерь энергии с учетом экранирования, конечных
размеров и конечных масс ядер при использовании приближения
JWM
<i>Качанович П.В., Колбас А.П.</i> Сравнительный анализ некоторых
биохимических параметров Alternanthera brasiliana под действием
брассиностероидов
Коваленко В.В. Ростстимулирующее и антистрессовое действие
салициловой кислоты на растения пшеницы в лабораторных
условиях
Колбас Н.Ю. Прооксидантная активность гидроксикоричных кислот
в реакции индуцированного автоокисления адреналина
Корецкая Е.Б., Ступень Н.С. Оценка степени загрязнённости
тяжёлыми металлами водоёмов Брестской области
Корзюк О.В. Антистрессовое и рострегулирующее действие
стероидных гликозидов на злаковые культуры в условиях влияния
ионов свинца
Корзюк О.В., Постник М.Н. Спектр действия оптимальных
концентраций стероидных гликозидов на рост злаковых культур
Кунцевич К.В. Качественные характеристики тотальной ДНК,
выделенной из лекарственного растительного сырья Хвоща
полевого
к солевому стрессу и перспективности использования стероидных
соединений
Макаренко Т.В., Гребенчук Е.М. Содержание тяжелых металлов
в макрофитах старичного комплекса реки Сож
Макоед И.И. Кристаллохимические аспекты получения
мультиферроиков на основе ферритов со структурой шпинели
и граната
Матусевич Н.М., Жигар М.П. Кристаллы щавелевокислого кальция
в тканях коры однолетнего стебля Розоцветных как таксономический
признак
<i>Матыс В. Г., Ашуйко В. А., Новикова Л. Н.</i> Повышение
корозионной стойкости оцинкованной стали с помощью
неорганических ингибиторов
Нехань Н. В. , Жилко В. В. Количественное определение
экстракционных характеристик ионных ассоциатов высших

иозга	
труктуры порошков и тонких плёнок твердых растворов системы	
$M_{1-x}Fe_xNiGe (0.05 \le x \le 0.30)$	
Секержицкий В.С. Об исследовании нейтронизации атомных ядер	
в рамках ядерной модели ферми-газа	
Сорока А.В., Терлецкая Н.Ф., Антонюк А.С. Агроэкологическа	
оценка химического состава отходов зерноперерабатывающих предприятий	
Сорока А.В., Гапонюк А.Н., Костюченко Н.Н., Гусак С.И	
Агроэкологическая оценка химического состава бесподстилочного	
павоза современных животноводческих комплексов и его влияние на	
итратное загрязнение почв	
прожичук в.д., колоис н.то. динамика фенольных соединении плодов черешни при их хранении	
Тур Э.А., Тричик В.В. Противоскользящий акриловый материал ка	
кологичное решение при горизонтальной разметке автомобильных	
(орог	
Тур Э.А., Тур А.В. Исследование и сравнительный анализ основных арактеристик световозвращающих стеклошариков	
Филиппова Д.П., Колбас Н.Ю. Антиоксидантная активность листье	
полисциаса (<i>Polyscias</i> J.R. Forst)	
Филон А.А. , Беляева Л.А. Изучение влияния биополимерного	
бурового раствора на керн в процессе бурения продуктивны: отложений скважины № 198 Ю-Осташковичской	
<i>Фузеева И.А., Левковская М.В.</i> Оценка качества среды ул. Катин Бог	
. Бреста по состоянию Сосны обыкновенной	
Цыганчук Н.Е. Аспекты влияния нефти и нефтепродуктов на рос	
и развитие растений	
Щемелёв А.А., Седакова В.А. Получение цитратного комплекс $\mathrm{Fe}(\mathrm{II})$	
АКТУАЛЬНЫЕ ПРОБЛЕМЫ	

Берестнев А.С., Мычко Д.И. Проблема организации и проведения	
химического эксперимента в учреждениях общего среднего	
образования Республики Беларусь с использованием современного	
оборудования	179
Василевская Е.И., Цобкало Ж.А. Формирование профессиональных	
компетенций при выполнении дипломных работ по педагогической	
тематике на химическом факультете классического университета	182
Зубец И.В. Управляемая самостоятельная работа студентов и формы	
диагностики профессиональных компетенций	185
Зыкова Е.Л., Довнар А.К. Некоторые аспекты преподавания химии	
иностранным студентам на подготовительном отделении медвуза	188
Ивкович А.С. Использование исторических сведений для реализации	
межпредметных связей курсов физики и химии	192
Каваленка А.М. Асаблівасці арганізацыі навукова-даследчай працы	
студэнтаў хіміка-біялагічнага профілю пры вывучэнні англійскай	
МОВЫ	195
Коваленко В.В., Ступень Н.С. Реализация компетентностного	
подхода при изучении основных химических понятий и законов	
в курсе «Общая и неорганическая химия»	197
Коваленко Н.А., Хмылко Л.И. Преемственность преподавания	
химических дисциплин в ВУЗе	200
Лупаков В.Э. , Лупакова М.В. Формирование понятий об	
электронном облаке и атомной орбитали в школьном курсе химии	204
<i>Малашонок И.Е., Шуляк И.В.</i> Межпредметная интеграция химии	
и иностранного языка	207
<i>Мелеховец С.С.</i> «Перевёрнутое обучение» как фактор оптимизации	
образовательного процесса по химии в профильных и интегрированных	
классах	211
Одинцова М.В., Перминова Е.А. Формы и методы активного	
контекстного обучения химическим дисциплинам в ВУЗе	215
Прищепова И.В., Чернышева Л.В. Рейтинговая оценка компетенций	
студентов по химическим дисциплинам в медицинском ВУЗе	220
Пырх О.В., Шоба А.С. Оценка эффективности использования	
технологии проблемного обучения на уроках химии	224
Радченко С.Л., Гвоздева Н.А., Радченко М.Ю. Создание	
компьютерной программы для обучения студентов химии	228
Семенюк В.П. Эффективность использования электронных средств	
обучения химии	231
Серый А.И., Серая З.Н., Силаев Н.В. Квантовая химия как пример	
взаимосвязи между физикой и химией	234

Слабін У.К. Хімічныя эпонімы ў вучобе студэнта: сутнаснае веданне	
або знешняе пазнаванне?	240
Слабодчикова А.Э., Дроздова Н.И. Использование элементов	
развивающего обучения при изучении основных классов	
неорганических соединений	245
Ступень Н.С., Коваленко В.В. Элементы содержательного модуля	
химической компетенции «Математические расчеты» (на примере	
дисциплины «Решение усложненных задач по химии»)	249
Тур Э.А., Дудар Л., Михалюк М. Содержание лабораторного	
практикума по исследованию органолептических и физико-	
химических показателей молока в рамках дисциплины «Технология	
пищевых производств»	252
Хаданович А.В., Толкач В.В. Модульное обучение на уроках химии	
как фактор развития познавательного интереса учащихся	
к предмету	257
<i>Шитько Л.И.</i> , <i>Мычко Д.И</i> . Реализация инновационного	
педагогического проекта «Внедрение модели формирования	
информационной культуры учащихся средствами интерактивных	
методов обучения предметам «Биология», «Физика», «Химия»	
в учреждениях общего среднего образования	263
Шичкова Т.А., Курило И.И. Роль самостоятельной работы студентов	-00
при изучении дисциплины «Физическая и коллоидная химия»	267
Шкуратова Н.В. Экологические аспекты изучения бриофитов	271
Ясюкевич Л.В., Бычек И.В. Междисциплинарные связи как средство	2/1
повышения эффективности адаптации студентов-первокурсников	275
nobilitenini spipektindhoetii agantaqiin etygentob nepdokypeninkob	- 1