Национальная академия наук Беларуси Центральный ботанический сад

# Роль ботанических садов и дендрариев в сохранении, изучении и устойчивом использовании разнообразия растительного мира

Материалы Международной научной конференции, посвященной 85-летию Центрального ботанического сада Национальной академии наук Беларуси

(г. Минск, 6–8 июня 2017 г.)

В ДВУХ ЧАСТЯХ

Часть 2









год наукиэкономике **2017**  УДК 58(476-25)(082) ББК 28.5л6(4Беи)я43 Р68

Role of Botanical Gardens and Arboretums in conservation, investigation and sustainable using diversity of the plant world

Proceedings of the International Conference dedicated to 85th anniversary of the Central Botanical Garden of the National Academy of Sciences of Belarus

In two parts Part 2

### Редакционная коллегия:

В. В. Титок, д-р биол. наук, чл.-корр. НАН Беларуси; А. В. Башилов, канд. биол. наук; Н. Г. Брель; И. К. Володько, канд. биол. наук; Л. В. Гончарова, канд. биол. наук; Л. А. Головченко, канд. биол. наук; Л. В. Завадская, канд. биол. наук; О. Н. Козлова; С. М. Кузьменкова; Н. М. Лунина, канд. биол. наук; Е. Г. Пузанкевич; Е. В. Спиридович, канд. биол. наук; А. П. Яковлев, канд. биол. наук.

### Рецензенты:

P68

В. Н. Решетников, зав. отделом Центрального ботанического сада НАН Беларуси, д-р биол. наук, акад. НАН Беларуси; К. Г. Ткаченко, зав. исследовательской группой Ботанического сада Петра Великого Ботанического института РАН, д-р. биол. наук.

Иллюстрации предоставлены авторами публикаций

**Роль** ботанических садов и дендрариев в сохранении, изучении и устойчивом использовании разнообразия растительного мира = Role of Botanical Gardens and Arboretums in conservation, investigation and sustainable using diversity of the plant world : материалы Международной научной конференции, посвященной 85-летию Центрального ботанического сада Национальной академии наук Беларуси (г. Минск, 6–8 июня 2017 г.). В 2 ч. Ч. 2 / Национальная академия наук Беларуси; Центральный ботанический сад; редкол.: В. В. Титок [и др.]. — Минск : Медисонт, 2017. — 528 с.

ISBN 978-985-7136-55-1. ISBN 978-985-7136-57-5 (2 ч.).

В сборнике представлены материалы Международной научной конференции «Роль ботанических садов и дендрариев в сохранении, изучении и устойчивом использовании разнообразия растительного мира», посвященной 85-летию Центрального ботанического сада Национальной академии наук Беларуси.

В 1 части публикуются тезисы докладов секций «1. Теоретические основы и практические результаты интродукции растений», «2. Научное, прикладное и образовательное значение ботанических коллекций».

Во 2 части представлены тезисы докладов секций «3. Экология, физиология и биохимия интродуцированных растений», «4. Биотехнологические и молекулярно-генетические аспекты изучения и использования биоразнообразия растений», «5. Проблемы защиты растений в ботанических садах», «6. Современные направления ландшафтного дизайна и зеленого строительства».

УДК 58(476-25)(082) ББК 28.5л6(4Беи)я43

ISBN 978-985-7136-55-1 ISBN 978-985-7136-57-5 (2 ч.)

- © Центральный ботанический сад Национальной академии наук Беларуси, 2017
- © Оформление. ООО «Медисонт», 2017

Эффекты 24-эпибрассинолида на прорастание семян и рост эксплантов ели европейской *Picea abies* (L.) Karst. на этапе асептического введения в культуру *in vitro* при разных типах освещения

# Чалей А. В.<sup>1</sup>, Буй А. В.<sup>1</sup>, Кудряшова О. А.<sup>1</sup>, Волотович А. А.<sup>2</sup>, Федоренко М. П.<sup>2</sup>, Хрипач В. А.<sup>3</sup>

<sup>1</sup> Учреждение «Республиканский лесной селекционно-семеноводческий центр»

**Резюме.** Изучали действие разных концентраций 24-эпибрассинолида (ЭБ) в диапазоне от  $1 \times 10^4$  до 10 мг/л на изменчивость количества и морфометрических показателей стерильных, активно регенерирующих эксплантов ели европейской на этапе асептического введения в культуру *in vitro*. В качестве первичных эксплантов использовали фрагменты стерильных проростков ели, а именно, верхнюю часть гипокотиля длиной 5–7 мм, с семядольными хвоинками и апексом. Растворы ЭБ применяли при проращивании семян после стерилизации. Экспланты культивировали *in vitro* при люминесцентном и светодиодном освещении. Для большинства вариантов опыта с ЭБ отмечено увеличение в 2–7 раз количества стерильных, активно регенерирующих эксплантов, по сравнению с контролем. Установлено достоверное при P < 0.05 и P < 0.01 увеличение, по сравнению с контролем, количества семядольных хвоинок в 1,3 раза при светодиодном освещении, количества побегов — в 1,2–1,7 раза, при разных типах освещения, и длины побегов в 1,5 раза, в присутствии 1–10 мг/л, 0,0001–10,0000 мг/л и 0,001–0,010 мг/л ЭБ, соответственно.

The 24-epibrassinolide effects on seeds germination and explants growth of *Picea abies* (L.) Karst. at stage of aseptic introduction to *in vitro* culture at different types of lighting. Chaley A. V., Buy A. V., Kudryashova O. A., Volotovich A. A., Fedorenko M. P., Khripach V. A. **Summary.** Studied the action of different concentration of 24-epibrassinolid (EB) in the range from  $1 \times 10^{-4}$  to 10 mg/l on variability of quantity and morphometric indices of sterile, actively regenerating explants of *Picea abies* at stage of aseptic introduction to *in vitro* culture. As primary explants used fragments of sterile sprouts of *Picea abies*, the upper part of a hypocotyl in 5–7 mm long, with cotyledon needles and an apex. EB solutions applied in case of seeds cultivation after sterilization. Explants cultivated *in vitro* in case of luminescent and LED lighting. For the majority of options of experience with EB increase by 2–7 times of quantity of sterile, actively regenerating explants, in comparison with control. It is set the authentic in case of P < 0.05 and P < 0.01 increase, in comparison with control, quantities cotyledon needles by 1.3 times in case of LED lighting, the number of escapes by 1.2–1.7 times, in case of different types of lighting, and length of escapes by 1.5 times, in the presence of 1–10 mg/l; 0,0001–10,0000 mg/l and 0,001–0,010 mg/l of EB, respectively.

<sup>&</sup>lt;sup>2</sup> УО «Полесский государственный университет»

<sup>&</sup>lt;sup>3</sup> ГНУ «Институт биоорганической химии НАН Беларуси»

### Введение

Ежегодно от различных неблагоприятных факторов гибнут тысячи гектаров лесов. В связи с тем, что традиционное восстановление лесного массива требует значительных затрат времени и средств возникла необходимость в разработке новой технологии ускоренного получения посадочного материала. Одним из таких методов вегетативного размножения, который приобретает большое значение, является микроклональное размножение растений. Микроклональное рамножение хвойных является вопросом мирового масштаба [1, 2]. Получение культуры хвойных пород *in vitro* может способствовать интенсивному лесовосстановлению.

### Материал и методы

Асептическое введение семян ели европейской проводили следующим образом:

- семена отмывают 72% хозяйственным мылом под проточной водой;
- семена стерилизуют в течение 30 минут в 7,5% растворе гипохлорита Na с добавлением 2 мг аскорбиновой кислоты и 300 мкл Tween 20 из расчета на 100 мл стерилизующего раствора;
- после стерилизации семена отмывают по 15 минут в 3-х, 4-х емкостях (объемом 0,5–1 л каждая) со стерильной дистиллированной водой с добавлением 2 мг аскорбиновой кислоты из расчета на 100 мл стерильной дистиллированной воды;
- стерильные семена помещают в стерильные стеклянные емкости объемом 250 мл на фильтровальную бумагу, пропитанную стерильной водой, либо раствором 24-эпи-брассинолида (ЭБ) в разных концентрациях в зависимости от варианта опыта (предварительно воду, либо раствор ЭБ автоклавировали на протяжении 25 мин при температуре +121°C).

С целью повышения эффективности асептического введения и ускорения роста работа проводилась со следующими вариантами растворов ЭБ: 0,0000 мг/л (контроль); 0,0001 мг/л; 0,0010 мг/л; 0,0100 мг/л; 1,0000 мг/л; 10,0000 мг/л.

В каждой банке фильтровальная бумага увлажнялась 2 мл раствора и на нее выкладывали по 5 семян.

Семена культивировали на стеллажах световой установки при освещенности 4000 лк (2 люминесцентных лампы OSRAM L36W/76 Natura) либо освещенности 900 лк (светодиодные светильники серии ДПО01–2×5–001 с цветопередачей синий, зеленый, красный в соотношении 2:1:6), при температуре +25°C, фотопериоде день/ночь — 16 ч/8 ч, относительной влажности воздуха 70%, до появления проростков.

Еженедельно учитывали количество инфицированных, стерильных, проросших семян. При высадке на питательную агаризованную среду учитывали количество стерильных, активно регенерирующих эксплантов; длину корня; длину гипокотиля; количество семядольных хвоинок.

Экспланты представляли собой верхний фрагмент гипокотиля 0,5–1 см длиной с семядольными хвоинками и верхушечной почкой. Экспланты высаживали на агаризованную среду ½ МС [3] без добавления гормонов. После первого пассажа учитывали количество и длину образовавшихся у экспланта побегов.

Общий математический анализ данных проводили по стандартным методам вариационной статистики [4], с использованием программы статистического анализа данных STATISTICA 6.0 [5]. Двухфакторный дисперсионный анализ данных и расчет доли влияния факторов на изменчивость исследуемых признаков проводили в программе статистического анализа AB-Stat 1.0, разработанной в Институте генетики и цитологии НАН Беларуси [6].

### Результаты и обсуждение

Анализ изменчивости длины гипокотиля у проростков ели европейской показал достоверное уменьшение значений данного показателя по сравнению с контролем в варианте с 1,0 мг/л ЭБ при светодиодном освещении и достоверное увеличение его значений в вариантах с 0,0001 мг/л и 1,0 мг/л ЭБ при люминесцентном освещении (табл. 1).

Установлено высоко достоверное увеличение длины корня в вариантах с 0,001 мг/л и 0,1 мг/л ЭБ при светодиодном освещении и уменьшение его значений варианте с 0,0001 мг/л ЭБ при светодиодном освещении и в вариантах с 0,0001 мг/л; 0,1 мг/л; 10,0 мг/л ЭБ при люминесцентном освещении (табл. 1).

Отмечено высоко достоверное (при P<0,01) увеличение количества семядольных хвоинок у проростков ели европейской во всех вариантах опыта с ЭБ по сравнению с контролем в условиях светодиодного освещения и в варианте с 1,0 мг/л ЭБ в условиях люминесцентного освещения (табл. 1).

Экспланты высаживали на агаризованную среду ½ МС без добавления гормонов. После первого пассажа (через 3 месяца) учитывали количество и длину образовавшихся у экспланта побегов. Данные представлены в табл. 2.

Таблица 1
Морфометрические показатели проростков ели европейской при асептическом введении в культуру *in vitro* 

| Вариант опыта                 | Длина гипокотиля, см | Длина корня, см    | Количество семядольных хвоинок, шт. |  |  |
|-------------------------------|----------------------|--------------------|-------------------------------------|--|--|
| Светодиодное освещение        |                      |                    |                                     |  |  |
| ЭБ <sub>0,0000 контроль</sub> | 2,5±0,2              | 2,0±0,1            | 6,0±0,6                             |  |  |
| ЭБ <sub>0,0001</sub>          | 1,2±0,1*             | 0,1±0,0**          | 7,0±0,6                             |  |  |
| ЭБ <sub>0,0010</sub>          | 2,1±0,7              | 3,8±0,8**          | 7,3±0,3                             |  |  |
| ЭБ <sub>0,0100</sub>          | 2,8±0,2              | 2,1±0,4            | 7,1±0,3                             |  |  |
| ЭБ <sub>0,1000</sub>          | 2,7±0,6              | 3,7±0,5**          | 7,1±0,7                             |  |  |
| ЭБ <sub>1,0000</sub>          | 2,0±0,3              | 1,5±0,4            | 7,7±0,3*                            |  |  |
| ЭБ <sub>10,000</sub>          | 2,0±0,1              | 2,0±0,1            | 7,7±0,7*                            |  |  |
| HCP <sub>0,05</sub>           | 1,2                  | 0,7                | 1,3                                 |  |  |
| HCP <sub>0,01</sub>           | 1,8                  | 1,0                | 1,9                                 |  |  |
|                               | Люм                  | инесцентное освеще | ение                                |  |  |
| ЭБ <sub>0,0000 контроль</sub> | 1,7±0,2              | 3,0±0,9            | 7,0±0,1                             |  |  |
| ЭБ <sub>0,0001</sub>          | 2,3±0,3*             | 1,2±0,3**          | 6,0±0,1                             |  |  |
| ЭБ <sub>0,0010</sub>          | 1,5±0,1              | 2,5±0,2            | 7,0±0,6                             |  |  |
| ЭБ <sub>0,0100</sub>          | 1,6±0,2              | 3,1±0,8            | 6,7±0,3                             |  |  |
| ЭБ <sub>0,1000</sub>          | 1,4±0,1              | 1,9±0,2*           | 7,0±0,6                             |  |  |
| ЭБ <sub>1,0000</sub>          | 2,5±0,2**            | 2,9±0,4            | 7,6±0,4                             |  |  |
| ЭБ <sub>10,000</sub>          | 1,8±0,2              | 2,1±0,2*           | 6,7±0,9                             |  |  |
| HCP <sub>0,05</sub>           | 0,5                  | 0,9                | 1,5                                 |  |  |
| HCP <sub>0,01</sub>           | 0,7                  | 1,2                | 2,1                                 |  |  |
|                               |                      |                    |                                     |  |  |

Примечание: данные приведены как среднее арифметическое  $\pm$  стандартная ошибка средней. Варианты опыта (индекс обозначает концентрацию ЭБ в мг/л): 0,0000 мг/л; 0,0001 мг/л; 0,0010 мг/л; 0,0100 мг/л; 1,0000 мг/л; 10,0000 мг/л. Полужирным шрифтом выделены значения, достоверно отличающиеся от значений в контроле:  $\pm$  при P<0,05;  $\pm$  при P<0,01. То же для таблиц 2–3.

Таблица 2
Изменчивость количественных показателей при культивировании эксплантов ели европейской *in vitro* (1 пассаж) после асептического введения с использованием ЭБ в разных концентрациях

| Вариант<br>опыта     | Количество стерильных,<br>активно регенерирующих эксплантов, % | Количество побегов,<br>шт. | Длина побегов, см |
|----------------------|----------------------------------------------------------------|----------------------------|-------------------|
|                      | Светодиодное осв                                               | ещение                     |                   |
| ЭБ <sub>0,0000</sub> | 4                                                              | 1,0±0,2                    | 1,0±0,1           |
| ЭБ <sub>0,0001</sub> | 4                                                              | 1,0±0,1                    | 1,2±0,1           |
| ЭБ <sub>0,0010</sub> | 12                                                             | 1,7±0,3**                  | 1,1±0,2           |
| ЭБ <sub>0,0100</sub> | 24                                                             | 1,2±0,2*                   | 1,5±0,2**         |
| ЭБ <sub>0,1000</sub> | 28                                                             | 1,2±0,2*                   | 1,1±0,2           |
| ЭБ <sub>1,0000</sub> | 12                                                             | 1,0±0,1                    | 1,1±0,1           |
| ЭБ <sub>10,000</sub> | 12                                                             | 1,3±0,3**                  | 0,8±0,2           |
|                      | HCP <sub>0,05</sub>                                            | 0,2                        | 0,3               |
|                      | HCP <sub>0,01</sub>                                            | 0,3                        | 0,5               |
|                      | Люминесцентное ос                                              | вещение                    |                   |
| ЭБ <sub>0,0000</sub> | 4                                                              | 1,0±0,1                    | 0,9±0,2           |
| ЭБ <sub>0,0001</sub> | 8                                                              | 1,5±0,4**                  | 1,0±0,6           |
| ЭБ <sub>0,0010</sub> | 4                                                              | 1,0±0,1                    | 1,5±0,1**         |
| ЭБ <sub>0,0100</sub> | 12                                                             | 1,0±0,1                    | 0,9±0,1           |
| ЭБ <sub>0,1000</sub> | 4                                                              | 1,0±0,1                    | 1,0±0,1           |
| ЭБ <sub>1,0000</sub> | 28                                                             | 1,1±0,1                    | 0,9±0,1           |
| ЭБ <sub>10,000</sub> | 12                                                             | 1,0±0,1                    | 0,7±0,2           |
|                      | HCP <sub>0,05</sub>                                            | 0,2                        | 0,3               |
|                      | HCP <sub>0,01</sub>                                            | 0,3                        | 0,5               |
|                      |                                                                |                            |                   |

Выявлено достоверное увеличение количества побегов в вариантах опыта с 0,001; 0,01; 0,1; 10 мг/л ЭБ по сравнению с контролем в условиях светодиодного освещения и в варианте с 0,0001 мг/л ЭБ в условиях люминесцентного освещения. Длина побегов высоко достоверно увеличивалась в варианте опыта с 0,01 мг/л ЭБ по сравнению с контролем в условиях светодиодного освещения и в варианте с 0,001 мг/л ЭБ в условиях люминесцентного освещения.

Отмечена тенденция увеличения количества стерильных, активно регенерирующих эксплантов при повышении концентрации ЭБ в диапазоне 0,0001–0,1 мг/л по сравнению с контролем при светодиодном освещении. В целом, в большинстве вариантов опыта с ЭБ при обоих типах освещения выход стерильных, активно регенерирующих эксплантов был больше, чем в контроле. Максимальное значение данного показателя (28%) было в варианте с 0,1 мг/л ЭБ при светодиодном освещении и в варианте с ЭБ 1,0 мг/л при люминесцентном освещении.

Таблица 3 Двухфакторный дисперсионный анализ изменчивости количественных показателей у эксплантов ели европейской в культуре *in vitro* 

| ИВ                   | df | КП, шт. |         | ДП, см |         | КСХ, шт. |         |
|----------------------|----|---------|---------|--------|---------|----------|---------|
| ИВ                   |    | СК      | ДВ,%    | СК     | ДВ,%    | СК       | ДВ,%    |
| Общее                | 27 | 0,167   | 100,000 | 0,234  | 100,000 | 3,751    | 100,000 |
| Фактор А             | 1  | 0,054   | 1,195   | 0,226  | 3,569   | 0,389    | 0,384   |
| Фактор Б             | 6  | 0,302   | 40,129  | 0,189  | 17,889  | 8,387    | 49,680  |
| AxB                  | 6  | 0,141   | 18,762  | 0,112  | 10,593  | 0,456    | 2,699   |
| Повторности          | 1  | 0,211   | 4,665   | 0,990  | 15,639  | 2,117    | 2,091   |
| Случайные отклонения | 13 | 0,123   | 35,249  | 0,255  | 52,310  | 3,517    | 45,147  |

Примечание: ИВ — источник варьирования; df — число степеней свободы; СК — средний квадрат; ДВ — доля влияния фактора; фактор А — источник освещения (светодиодное, люминесцентное); фактор В — концентрации ЭБ (0,0000 мг/л, 0,0001 мг/л; 0,0010 мг/л; 0,0100 мг/л; 1,0000 мг/л; 10,0000 мг/л).

Двухфакторный дисперсионный анализ не установил достоверного влияния исследуемых факторов на изменчивость анализируемых показателей, тем не менее, показана высокая доля влияния фактора «концентрация ЭБ» на изменчивость количества побегов (40%), длины побегов (18%) и количества семядольных хвоинок (50%).

## Список литературы

1. Ewald D. A system for repeatable formation of elongating adventitious buds in Norway spruce tissue cultures / D. Ewald, R. Suss // Silvae Genetica. — 1993. — Vol. 42. — P. 169–175.

......

- 2. Филиппова И. П. Адвентивное почкообразование и каллусогенез у сибирских видов хвойных в культуре in vitro / И. П. Филиппова. Автореф. дисс. на соиск. уч. ут. канд. биол. наук. Красноярск, 2010. 23 с.
- 3. Trigiano R. N. Plant tissue culture concepts and laboratory exercises / R. N. Trigiano, D. J. Gray. US/ MA, CRC Press LLC, 1999–2000. 454 p.
- 4. Доспехов Б. А. Методика полевого опыта / Б. А. Доспехов. М., 1985. 351 с.
- 5. Боровиков В. П. STATISTICA: Искусство анализа данных на компьютере / В. П. Боровиков. СПб., 2001. 650 с.
- 6. Аношенко Б. Ю. Программы анализа и оптимизации селекционного процесса растений / Б. Ю. Аношенко // Генетика. 1994. Т. 30. Приложение. С. 8–9.

# Оглавление

# Секция 3. Экология, физиология и биохимия интродуцированных растений

| Коваленко Н. А., Ахрамович I. И., Супиченко I. Н., Леонтьев В. Н., Шутова А. I.<br>Антибактериальная активность эфирного масла Agastache aurantiaca                                        | 3  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Базарнова Н. Г., Тихомирова Л. И., Халявин И. А.<br>Накопление элементов-биофилов и тяжёлых металлов<br>в биотехнологическом сырье <i>Iris sibirica</i> L                                  | 6  |
| Базяк Т. О., Михайлик А. Ю., Лещенко А. Ю., Колесниченко Е. В.<br>Поликомпонентные нанопрепараты как базис оптимизации технологий<br>веленого строительства Украины                        | 10 |
| Браилко В. А.<br>Морозостойкость и способности к закаливанию декоративных интродуцентов<br>семейства <i>Caprifoliaceae</i> Juss. при культивировании на Южном берегу Крыма                 | 15 |
| Булавко Г. И., Яковлев А. П., Антохина С. П.<br>Влияние стимуляторов роста растений на активность почвенных микроорганизмов<br>в корнеобитаемом слое торфа в посадках клюквы крупноплодной | 18 |
| Войцеховская Е. А., Китаева М. В.<br>Изучение биохимического состава некоторых сортов рода <i>Раеопіа</i> L. в коллекции<br>Центрального ботанического сада НАН Беларуси                   | 22 |
| Володько И. К., Алферович Ж. Д.<br>Сезонная динамика фотосинтетической активности листьев рододендронов<br>(по данным регистрации флуоресценции)                                           | 26 |
| Высоцкая О. Н., Балекин А. Ю., Антипин М. И.<br>Коллекция редких кактусов из жидкого азота                                                                                                 | 31 |
| Гаранович И. М., Архаров А. В., Блинковский Е. Д.<br>Влияние препарата Наноплант на рост и развитие саженцев<br>цекоративных древесных интродуцентов                                       | 35 |
| Гетко Н. В., Поболовец Т. А., Субоч В. П.<br>Петучие компоненты, выделяемые в воздушную среду листьями<br>оранжерейных растений Myrtus communis и Psidium cattleanum (Myrtaceae Adans.)    | 40 |
| Гребенникова О. А., Палий А. Е., Палий И. Н.<br>Особенности накопления фенольных соединений и изменения активности<br>полифенолоксидазаы у некоторых сортов <i>Olea europaea</i>           | 46 |
|                                                                                                                                                                                            |    |

| Губанова Т. Б.                                                                                                                                     |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Потенциальная морозостойкость и особенности морозных повреждений у представителей семейства <i>Oleaceae</i> в условиях Южного берега Крыма         | 50   |
| Загурская Ю. В., Сиромля Т. И.                                                                                                                     |      |
| Элементный химический состав Leonurus quinquelobatus на юге Западной Сибири                                                                        | 53   |
| Иващенко И. В., Балко А. Б., Феделеш-Гладинец М. И.                                                                                                |      |
| Изучение антимикробных свойств экстракта<br>хризантемы увенчанной при интродукции в Полесье Украины                                                | 57   |
| Коба В. П., Браилко В. А.                                                                                                                          |      |
| Некоторые аспекты водного режима декоративных растений в парковых сообществах                                                                      | 60   |
| Коба В. П., Герасимчук В. Н., Папельбу В. В., Сахно Т. М.<br>Динамика роста побегов некоторых видов рода Albizia Durazz. на Южном берегу Крыма     | 63   |
|                                                                                                                                                    |      |
| Колбас Н. Ю.<br>Биохимический состав                                                                                                               |      |
| и антиоксидантная активность плодов винограда в условиях г. Брест                                                                                  | 69   |
| Кондратьева В. В., Семёнова М. В., Олехнович Л. С., Данилина Н. Н., Воронкова О. В.                                                                |      |
| Салициловая и абсцизовая кислоты в листьях тюльпанов в связи с устойчивостью к грибным заболеваниям при выращивании растений без ежегодной выкопки | 74   |
| Мартиросян Л. Ю., Азарян К. Г.                                                                                                                     |      |
| Эффективность применения микоризного биостимулятора Миконет при выращивании некоторых декоративных многолетников                                   | 77   |
| Овакимян Ж. О.                                                                                                                                     |      |
| Эколого-физиологические особенности некоторых редких псаммофильных видов растений Армении в условиях in situ и ex situ                             | 81   |
| Овсепян А. С., Аветисян С. В., Тадевосян П. Е., Азарян К. Г.,<br>Колоян А. О., Филипеня В. Л., Чижик О. В.                                         |      |
| Инсектицидная активность меланиногенных штаммов Bacillus thuringiensis                                                                             | 86   |
| Ожерельева 3. Е.                                                                                                                                   |      |
| Изучение потенциала морозостойкости разных видов Sorbus в период оттепели                                                                          | 90   |
| Прохоров А. А.                                                                                                                                     | 0.4  |
| О самоорошении растений                                                                                                                            | 94   |
| Работягов В. Д., Палий А. Е., Хохлов С. Ю.<br>Компонентный состав эфирных масел новых гибридных форм Nepeta L                                      | 98   |
| Реут А. А., Миронова Л. Н.                                                                                                                         |      |
| Аминокислотный состав семян некоторых представителей рода <i>Paeonia</i> L. при интродукции в Республике Башкортостан                              | 103  |
| Решетников В. Н., Колбас Н. Ю., Чижик О. В., Деева А. М., Войцеховская Е. А.                                                                       |      |
| Антоцианы плодов представителей растений семейства Rosaceae и Ericaceae                                                                            | 106  |
| W. W.Y. A HITWORK CWITA HITHAY ARTIMENOCIE                                                                                                         | 1116 |

| Рудевич М. Н. Теоретические аспекты комплексного экологического мониторинга дендрологических коллекций на примере дендрария Центрального ботанического сада НАН Беларуси                                                                      | 109 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Рупасова Ж. А., Гаранович И. М., Шпитальная Т. В.,<br>Василевская Т. И., Криницкая Н. Б., Фролова Л. В.<br>Биохимический состав плодов интродуцированных сортов<br>актинидии коломикта (Actinidia kolomikta Maxim. & Rupr.) Maxim) в Беларуси | 113 |
| Сагарадзе В. А., Бабаева Е. Ю., Каленикова Е. И., Трусов Н. А., Ростовцева М. В.<br>Сравнительная оценка содержания флавоноидов в цветках<br>с листьями некоторых видов рода <i>Crataegus</i>                                                 | 117 |
| Сахно Т. М., Хромов А. Ф.<br>Некоторые аспекты интродукции североамериканских видов<br>рода <i>Pinus</i> L. в Никитском ботаническом саду                                                                                                     | 120 |
| Сидорович Е. А., Кудин М. В., Яковлев А. П., Белый П. Н., Вашкевич М. Н.<br>Центральный ботанический сад и охрана природы в Беларуси                                                                                                          | 123 |
| Солдатенков Г. И., Бученков И. Э.<br>Характеристика видов растительности и биотических групп заказника «Простырь»                                                                                                                             | 127 |
| Сыщиков Д. В. Особенности аккумуляции восстановленной формы глутатиона в листьях некоторых видов древесно-кустарниковых растений                                                                                                              | 132 |
| Терехина Н. В., Семёнов О. М. Визуальная оценка экологического состояния клена остролистного (Acer platanoides) и других древесных пород в парке-дендрарии Ботанического сада БИН им. В. Л. Комарова РАН                                      | 135 |
| Тишин Д. В., Фардеева М. Б.<br>Дендрохронологические исследования бархата амурского<br>(Phellodendron amurense Rupr.), акклиматизированного на востоке Русской равнины                                                                        | 139 |
| Тринеева О. В., Сливкин А. И. Определение витаминов группы В в листьях крапивы двудомной                                                                                                                                                      | 142 |
| Хоменко И. М., Косык О. И. Изменение содержания пластидных и непластидных пигментов в листьях капусты декоративной ( <i>Brassica oleracea</i> var. <i>acephala</i> L.) в условиях городских ландшафтов Киева                                  | 145 |
| Чуб В. В., Миронова О. Ю.<br>Влияние различных источников света на рост и развитие растений                                                                                                                                                   | 148 |
| Шиш С. Н., Шутова А. Г., Спиридович Е. В., Скаковский Е. Д., Тычинская Л. Ю., Мазец Ж. Э.<br>Физиолого-биохимические особенности Nigella sativa L. при культивировании в Беларуси                                                             | 152 |
| Шутова А. Г., Спиридович Е. В., Титок В. В., Гиль Т. В., Китаева М. В., Решетников В. Н.<br>Антирадикальная активность листьев женьшеня                                                                                                       | 157 |

| Яковлев А. П., Белый П. Н., Николайчук А. М., Булавко Г. И.<br>Развитие подполового яруса растительности в сосновых насаждениях<br>вокруг предприятия по производству цемента | 162 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                               |     |
| Секция 4.                                                                                                                                                                     |     |
| Биотехнологические и молекулярно-генетические                                                                                                                                 |     |
| аспекты изучения и использования биоразнообразия растений                                                                                                                     |     |
| Ахметова А. Ш., Зарипова А. А.                                                                                                                                                |     |
| Морфогенез некоторых видов рода Hedysarum L. in vitro                                                                                                                         | 167 |
| Большакова Е. В., Емельянова И. С., Мокшин Е. В., Лукаткин А. С.                                                                                                              |     |
| Влияние состава питательных сред на морфогенез орхидей <i>in vitro</i>                                                                                                        | 172 |
| Браилко В. А., Тевфик А. Ш., Митрофанова И. В., Митрофанова О. В., Зубкова Н. В.                                                                                              |     |
| Особенности морфогенеза, структуры и физиологии растений                                                                                                                      |     |
| Canna × hybrida hort. ex Backer сорта 'Дар Востока' в культуре in vitro                                                                                                       | 175 |
| Брюхин В. Б.                                                                                                                                                                  |     |
| Молекулярно-генетическая регуляция апомиксиса                                                                                                                                 | 179 |
| Высоцкий Ю. И., Колмаков П. Ю.                                                                                                                                                |     |
| Изучение генетической гетерогенности гигантских борщевиков                                                                                                                    |     |
| в инвазивных популяциях на востоке Витебской области                                                                                                                          | 186 |
| Геращенков Г. А., Рожнова Н. А.                                                                                                                                               |     |
| Подбор и дизайн мишень в 5`UTR области гена DYAD для CRISPR/Cas9                                                                                                              |     |
| геномного конструирования апомейоза у арабидопсиса                                                                                                                            | 190 |
| Гордей И. А., Люсиков О. М., Гордей И. С., Шимко В. Е.                                                                                                                        |     |
| Создание и молекулярно-генетическая характеристика нового генофонда ржи                                                                                                       |     |
| и ржано-пшеничных амфидиплоидов секалотритикум                                                                                                                                | 193 |
| Егорова Н. А., Ставцева И. В., Митрофанова И. В.                                                                                                                              |     |
| Влияние генотипа и факторов культивирования на микроразмножение                                                                                                               | 100 |
| in vitro Lavandula angustifolia Mill                                                                                                                                          | 190 |
| Емельянова А. В., Щербаков Р. А., Аверина Н. Г.                                                                                                                               |     |
| 5-аминолевулиновая кислота как стимулятор активности                                                                                                                          |     |
| антиоксидантной защитной системы растений озимого рапса                                                                                                                       | 202 |
| Загорская М. С., Егорова Н. А.                                                                                                                                                |     |
| Влияние сорта и длительности культивирования                                                                                                                                  |     |
| на клональное микроразмножение мяты <i>in vitro</i>                                                                                                                           | 205 |
| Иванова Н. Н., Митрофанова И. В., Кузьмина Т. В., Хохлов С. Ю.                                                                                                                |     |
| Регенерация микропобегов в культуре высечек листьев хурмы восточной                                                                                                           | 209 |
| Исаева А. Н., Леконцева Т. Г., Федоров А. В.                                                                                                                                  |     |
| Оптимизация технологических приемов размножения Vitis vinifera L.                                                                                                             |     |
| в культуре in vitro при интродукции в условиях Среднего Предуралья                                                                                                            | 213 |

| Кабашникова Л. Ф., Макаров В. Н., Савченко Г. Е.<br>Активация синтеза фенольных соединений в каллусной культуре<br>красной фасоли ( <i>Phaseolus vulgaris</i> L.) с помощью экзогенной салициловой кислоты                                                                                | 218 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Капустин М. А., Харькова А. О., Чубарова А. С., Курченко В. П. Выделение и анализ состава куркуминоидов в экстрактах корневища <i>Curcuma longa</i>                                                                                                                                       | 222 |
| Ковзунова О. В., Решетников В. Н., Азизбекян С. Г.<br>Воздействие наночастиц меди на протеомный статус душицы обыкновенной                                                                                                                                                                | 226 |
| Ковзунова О. В., Эрст А. А., Азизбекян С. Г.<br>Влияние наночастиц металлов на протеомный статус представителей рода Silene L                                                                                                                                                             | 230 |
| Козел Н. В., Данилина Н. И., Булда К. Ю.<br>Стимуляция светодиодным освещением накопления фикоцианина<br>и фенольных соединений в клетках Spirulina platensis                                                                                                                             | 234 |
| Кондрацкая И. П., Столепченко В. А., Юхимук А. Н., Чижик О. В.,<br>Беляй М. О., Васько П. П., Решетников В. Н.<br>Создание фертильных межродовых гибридов житняка<br>(Agropyron cristatum) с райграсом пастбищным (Lolium perenne)<br>с использованием геномной и клеточной биотехнологии | 238 |
| Константинов А. В., Кулагин Д. В., Пантелеев С. В.<br>Разработка унифицированной технологии микроразмножения и поддержания коллекции перевиваемых культур тканей берез секции <i>Albae</i> Regel                                                                                          | 245 |
| Курченко В. П., Ризевский С. В., Эсауленко М., Цыганков В. Г.,<br>Бондарук А. М., Филонюк В. А., Спиридович Е. В.<br>Состав и содержание биологически активных веществ<br>в коре различных видов сирени Центрального ботанического сада НАН Беларуси                                      | 249 |
| Кутас Е. Н., Грибок Н. А., Веевник А. А., Павловский Н. Б. Влияние стерилизующих соединений на выход жизнеспособных эксплантов интродуцированных сортов хризантемы корейской (Chrysanthemum coreanum Nakai ex T. Mori) и жимолости съедобной (Lonicera edulis Turcz. ex Freyn)            | 256 |
| Кутас Е. Н., Грибок Н. А., Веевник А. А., Павловский Н. Б. Морфогенез интродуцированных сортов жимолости съедобной (Lonicera edulis Turcz. ex Freyn) в зависимости от состава питательных сред                                                                                            | 259 |
| Логвина А. О., Юрин В. М.<br>Сравнительная характеристика гетеротрофных и фотомиксотрофных<br>линий каллусных культур пажитника греческого                                                                                                                                                | 263 |
| Межнина О. А., Урбанович О. Ю.<br>Анализ генетического разнообразия представителей рода <i>Fragaria</i> L.,<br>произрастающих на территории Республики Беларусь                                                                                                                           | 268 |
| Молканова О. И. Биотехнологические аспекты культивирования <i>in vitro</i> некоторых перспективных сортов ягодных культур                                                                                                                                                                 | 272 |

| Мухаметвафина А. А.<br>Размножение хост в культуре <i>in vitro</i> фрагментами цветоносов                                       | 275 |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Никонович Т. В., Французенок В. В., Кильчевский А. В.                                                                           |     |
| Особенности выращивания горечавки лёгочной                                                                                      |     |
| (Gentiana pneumonanthe) в культуре in vitro                                                                                     | 280 |
| Носов А. М., Юрин В. М., Спиридович Е. В., Высоцкая О. Н., Решетников В. Н. Биотехнологические коллекции растений и криобанки — |     |
| важная часть Национального банка-депозитария живых систем                                                                       | 284 |
| Орловская О. А., Вакула С. И., Леонова И. Н.                                                                                    |     |
| Гибридизация сортов мягкой пшеницы с линиями <i>T. aestivum</i> ,                                                               |     |
| содержащими чужеродный генетический материал                                                                                    | 291 |
| Полюхович Ю. В., Лукша В. И., Левый А. В., Воронкова Е. В.,                                                                     |     |
| Гукасян О. Н., Жарич В. М., Ермишин А. П.                                                                                       |     |
| Оценка генетического разнообразия цитоплазм дикого                                                                              |     |
| аллотетраплоидного вида Solanum stoloniferum в связи с проблемой                                                                |     |
| мужской стерильности межвидовых гибридов                                                                                        | 295 |
| Попов Е. Г., Кухарева Л. В., Гиль Т. В., Савич И. М., Тычина И. Н.,                                                             |     |
| Аношенко Б. Ю., Игнатовец О. С., Феськова Е. В., Леонтьев В. Н., Титок В. В.                                                    |     |
| Растения Центрального ботанического сада НАН Беларуси                                                                           |     |
| как источники неогаленовых препаратов                                                                                           | 299 |
| Рожнова Н. А., Геращенков Г. А.                                                                                                 |     |
| CRISPR/Cas9 геномное редактирование промоторной области                                                                         |     |
| гевеин-подобного гена арабидопсиса                                                                                              | 303 |
| Савин П. С.                                                                                                                     |     |
| Технология получения альтернативного лекарственного                                                                             |     |
| растительного сырья — клеточной биомассы василистника малого,                                                                   |     |
| продуцента берберина                                                                                                            | 306 |
| Свистунова Н. Ю.                                                                                                                |     |
| Изучение влияния продолжительности и режима хранения сортовых семян лекарственных растений на основные посевные качества        |     |
| и цитогенетические характеристики их проростков                                                                                 | 308 |
| Синицына А. А., Тихомирова Л. И., Базарнова Н. Г., Ильичёва Т. Н.                                                               |     |
| Сравнительная характеристика химического состава                                                                                |     |
| и определение биологической активности растительной биомассы                                                                    |     |
| Iris sibirica L. разного способа получения                                                                                      | 312 |
| Спиридович Е. В., Шабуня П. С., Башилов А. В., Зубарев А. В., Решетников В. Н.                                                  |     |
| Оценка представителей рода Syringa L. с выявлением таксонов,                                                                    |     |
| обладающих высокой продуктивностью сирингина и антиоксидантной активностью                                                      | 317 |
| Сысоева А. В., Тихомирова Л. И., Базарнова Н. Г., Ильичёва Т. Н.                                                                |     |
| Комплексный анализ растительного сырья Potentilla alba L.,                                                                      |     |
| полученного на основе биотехнологии                                                                                             | 324 |
|                                                                                                                                 |     |

| Тихомирова Л. И.<br>Клеточная дифференциация и лигнификация ксилемы у Iris sibirica L. in vitro | 329 |
|-------------------------------------------------------------------------------------------------|-----|
| Филиппова С. Н., Булахова А. С.                                                                 |     |
| Влияние автоклавированных препаратов альгината натрия                                           |     |
| на ростовые параметры и накопление флавоноидов                                                  |     |
| в каллусной культуре Catharanthus roseus (L.) G. Don                                            | 334 |
| Филиппова С. Н., Семененкова А. А., Юрин В. М.                                                  |     |
| Влияние D-триптофана на ростовые характеристики                                                 |     |
| и накопление фенольных соединений в каллусной культуре <i>Vinca minor</i> L                     | 337 |
| Чалей А. В., Буй А. В., Кудряшова О. А., Волотович А. А., Федоренко М. П., Хрипач В. А.         |     |
| Эффекты 24-эпибрассинолида на прорастание семян                                                 |     |
| и рост эксплантов ели европейской <i>Picea abies</i> (L.) Karst. на этапе                       |     |
| асептического введения в культуру <i>in vitro</i> при разных типах освещения                    | 341 |
| Чижик О. В., Ковзунова О. В., Мазур Т. В., Кузовкова А. А.                                      |     |
| Разработка технологии биовосстановления ионов серебра в наночастицы                             |     |
| с использованием экстрактов лекарственных растений                                              | 346 |
| Чубарова А. С., Капустин М. А., Курченко В. П.                                                  |     |
| Вторичные метаболиты растений как маркеры внутривидового разнообразия растений                  | 351 |
| Шишлова-Соколовская А. М., Урбанович О. Ю., Федосеева И. В., Боровский Г. Б.                    |     |
| Трансгенные растения, экспрессирующие ген Arabidopsis thaliana NDB2                             |     |
| как модель для изучения реакции растения на стресс                                              | 355 |
| Buyun L., Tkachenko H., Osadowski Z., Kovalska L., Gyrenko O.                                   |     |
| Antimicrobial properties of an epiphytic orchid Coelogyne assamica Linden                       |     |
| & Rchb. f. against <i>Pseudomonas aeruginosa</i>                                                | 359 |
| Tkachenko H., Buyun L., Osadowski Z., Honcharenko V., Prokopiv A.                               |     |
| Preliminary studies of antibacterial activity of leaf extract of <i>Ficus</i>                   |     |
| natalensis subsp. natalensis Hochst. (Moraceae)                                                 | 364 |
|                                                                                                 |     |
|                                                                                                 |     |
| Секция 5.                                                                                       |     |
| Проблемы защиты растений в ботанических садах                                                   |     |
| Варфоломеева Е. А., Наумова Н. И.                                                               |     |
| Защита декоративных растений от оранжерейной (тепличной) белокрылки                             |     |
| в Ботаническом саду Петра Великого                                                              | 371 |
| Головченко Л. А., Дишук Н. Г., Тимофеева В. А., Ярук И. В.                                      |     |
| Инвазии чужеродных видов патогенных грибов в насаждениях Беларуси                               | 375 |
| Дишук Н. Г.                                                                                     |     |
| Новые экологически-ориентированные технологии защиты                                            |     |
| посадочного материала от болезней и вредителей в питомниках                                     |     |
| и лесных культурах в Беларуси                                                                   | 379 |

| Жоров Д. Г., Буга С. В. Интродукция растений как фактор формирования комплекса инвазивных видов гемиптероидных насекомых (Hemipteroidea) рецентной фауны Беларуси                                       | 383 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Келдыш М. А., Червякова О. Н.                                                                                                                                                                           |     |
| Особенности защиты растений от вирусов в искусственных экосистемах  Главного ботанического сада РАН                                                                                                     | 386 |
| Комардина В. С.<br>Проблемы защиты насаждений яблони<br>от инвазивных видов фитопатогенных микроорганизмов                                                                                              | 390 |
| Кориняк С. И. Фитопатогенные микромицеты на культивируемых лекарственных растениях семейства Lamiaceae, интродуцированных в Беларуси                                                                    | 394 |
| Литвинова С. В., Рак Н. С.<br>Основные виды возбудителей болезней и вредителей<br>интродуцированных древесно-кустарниковых растений<br>сем. Rosaceae в дендрарии Полярно-альпийского ботанического сада | 397 |
| Огородник Л. Е.<br>Бактериальные болезни водных растений                                                                                                                                                | 401 |
| Пастухова И. С. Видовой состав вредителей и возбудителей болезней плодов, семян растений, включенных в делектус дендрария «Сочинского национального парка»                                              | 403 |
| Рак Н. С., Литвинова С. В. Инсектарий и его значение для биологического контроля численности вредителей в коллекционной оранжерее Полярно-альпийского ботанического сада                                | 408 |
| Рогинский А. С., Шакун А. А., Буга С. В.<br>Опыт использования свободного программного обеспечения—<br>СУБД LibreOffice Base для создания баз данных по фитофагам—<br>вредителям декоративных растений  | 412 |
| Рубель И. Э., Пантелеев С. В., Головченко Л. А., Дишук Н. Г., Константинов А. В. Молекулярно-генетическая идентификация фитопатогенов некоторых цветочных растений в насаждениях Беларуси               | 414 |
| Сауткин Ф. В.<br>Комплекс насекомых — вредителей деренов (Cornus spp.)<br>в условиях зеленых насаждений Беларуси                                                                                        | 419 |
| Свистова И. Д., Назаренко Н. Н., Кувшинова Н. М., Каменев В. Видовой состав микромицетов почвы Ботанического сада имени Б. А. Келлера Воронежского государственного агроуниверситета                    | 422 |
| Синчук О. В.<br>Спектр кормовых растений инвазивных видов минирующих<br>филлофагов рода <i>Phyllonorycter</i> Hübner. 1822 в условиях Беларуси и других регионов мира                                   | 426 |

| Степанова Е. А.<br>Эффективность применения биопрепаратов на розах                                                                                                            | 430 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Таварткиладзе К. Г., Чургулия-Шургая М. М.<br>Грибы, ассоциированные с Гинкго билоба, в Национальном ботаническом саду Грузии                                                 | 434 |
| Тимофеева В. А., Головченко Л. А., Войнило Н. В., Линник Л. И.<br>Эффективность применения фунгицидов в защите<br>конского каштана обыкновенного от бурой пятнистости листьев | 437 |
| Ширяева Н. В.<br>Проблемы защиты коллекционных растений сочинских парков<br>«Дендрарий» и «Южные культуры» от вредных насекомых и болезней                                    | 441 |
| Ярук И. В., Тимофеева В. А., Головченко Л. А.<br>Эффективность препаратов фунгицидного действия<br>по отношению к грибу Sclerotinia sclerotiorum (Lib.) de Bary               | 445 |
| Ярчаковская С. И., Колтун Н. Е., Михневич Р. Л.<br>Феромониторинг плодовой рябинной и смородинной<br>почковой молей в насаждениях ягодных культур                             | 450 |
| Stankevičienė A. State monitoring of woody plants in urban recreational green plantations in Lithuania                                                                        | 454 |
| Секция 6.<br>Современные направления<br>ландшафтного дизайна и зеленого строительства                                                                                         |     |
| Белоусова Н. Л., Лунина Н. М., Завадская Л. В.<br>Коллекции лаборатории интродукции и селекции<br>орнаментальных растений, перспективы их формирования и использования        | 459 |
| Валицкая Г. С., Пузанкевич Е. Г.<br>Зимние сады. История, перспективы и прогнозы                                                                                              | 462 |
| Иванова Л. А.<br>Инновационные газонные технологии для улучшения окружающей среды Арктики                                                                                     | 470 |
| Клименко А. В.<br>Сравнительный анализ состояния озеленения дворов в г. Киев                                                                                                  | 474 |
| Климчук С. К., Селиванова К. М., Климчук А. Т.<br>Перспективные сорта <i>Hemerocallis hybrida</i> hort.,<br>рекомендуемые для озеленения Жезказганского региона               | 479 |
| Ласло О. А.<br>Особенности внедрения пермакультуры на экологически<br>стабильных территориях, как элемента эколандшафтного дизайна                                            | 481 |

| Левон Ф. М., Левон В. Ф., Ильенко А. А.                                                 |     |
|-----------------------------------------------------------------------------------------|-----|
| О результатах исследований и новых разработках                                          |     |
| Национального ботанического сада им. Н. Н. Гришко НАН Украины                           |     |
| по некоторым важнейшим направлениям улучшения                                           |     |
| общего состояния зеленых насаждений в г. Киев                                           | 485 |
| Лунина Н. М., Белоусова Н. Л.                                                           |     |
| Современные тенденции цветочного оформления городов Беларуси                            | 489 |
| Макеева О. В.                                                                           |     |
| Использования приемов ландшафтного дизайна для формирования                             |     |
| разнообразия растительного мира экосистемы                                              | 493 |
| Романова М. Л., Червань А. Н., Пучило А. В., Кудин М. В., Русецкий С. Г., Рудевич М. Н. |     |
| Применение современных методов инвентаризации                                           |     |
| древесно-кустарниковой растительности в садово-парковом хозяйстве                       | 496 |
| Святковская Е. А., Тростенюк Н. Н., Гонтарь О. Б., Салтан Н. В., Шлапак Е. П.           |     |
| Особенности создания скверов на урбанизированных территориях                            |     |
| Кольского Севера на современном этапе                                                   | 501 |
| Ситпаева Г. Т.                                                                          |     |
| О научном значении коллекционных фондов                                                 |     |
| Института ботаники и фитоинтродукции КН МОН РК                                          | 505 |
| Чайка Т. А., Дыченко О. Ю.                                                              |     |
| Эколого-социо-экономические предпосылки развития зеленого строительства                 | 508 |