



мазырскага дзяржаўнага педагагічнага Універсітэта

2006 2 ⁽⁵⁾

Галоўны рэдактар д. біял. н. В. В. Валетаў

Рэдакцыйная калегія:

к. філал. н., намеснік галоўнага рэдактара С. Б. Кураш, к. ф.-м. н., адказны сакратар Э. Я. Грачаннікаў,

д. пед. н. В. І. Анісімаў, д. ф.-м. н. В. І. Башмакоў, д. ф.-м. н. В. І. Громак, к. псіхал. н. Л. М. Іванова, к. пед. н. Л. В. Ісмайлава, д. філал. н. У. І. Коваль, д. гіст. н. В. М. Ляўко, д. біял. н. В. І. Парфенаў, д. псіхал. н. Л. А. Пергаменшчык, д. пед. н. В. Ф. Русецкі, д. гіст. н. К. А. Рэвяка, д. псіхал. н. Т. М. Савельева, д. т. н. У. С. Савенка, д. т. н. В. В. Смірноў, д. т. н. В. Я. Старжынскі, к. гіст. н. С. В. Целяпень, д. ф.-м. н. В. В. Шапялевіч, д. філал. н. В. В. Шур, д. ф.-м. н. М. Д. Юдзін, к. ф.-м. н. М. М. Ягораў

Заснавальнік Установа адукацыі «Мазырскі дзяржаўны педагагічны універсітэт»

Зарэгістраваны ў Міністэрстве інфармацыі Рэспублікі Беларусь, пасведчанне № 1508 ад 30.10.2002 г.

Адрас рэдакцыі: 247760 Рэспубліка Беларусь, Гомельская вобласць, г. Мазыр, вул. Студэнцкая, 28. Тэл.: +375 (2351) 2-46-29

Здадзена ў набор 15.10.2006. Падпісана ў друк 21.12.2006 Фармат 60 х 90 1/8. Папера афсетная. Гарнітура Times New Roman Суг. Ум. друк. арк. 24. Тыраж 120 экз. Заказ № 102.

Ліцэнзія № 02330/0131885 ад 4 снежня 2006 г.

Карэктары: Т. М. Ліпская, Л. М. Бажэнка, П. Р. Кошман, Л. В. Жураўская Камп'ютэрная верстка: А. Л. Шчака, У. А. Дзегцяроў Тэхнічны рэдактар: А. В. Ліс

Надрукавана на тэхніцы рэдакцыйна-выдавецкага аддзела Установы адукацыі «Мазырскі дзяржаўны педагагічны універсітэт імя І. П. Шамякіна» 247760, Гомельская вобл., г. Мазыр, вул. Студэнцкая, 28, к. 114 Тэл.: +375 (2351) 2-46-29

Меркаванні, выказаныя аўтарамі, могуць не супадаць з пунктам погляду рэдакцыі

ISBN 978-985-477-195-4 © Мазырскі дзяржаўны педагагічны універсітэт імя І. П. Шамякіна, 2006

ВЕСНІК

Мазырскага дзяржаўнага педагагічнага універсітэта

Навуковы часопіс Выходзіць 2 разы ў год

<u>№</u> 2(15)

3 M E C T

МАТЭМАТЫКА
Γ уревский E . E ., E меличев B . A ., Π ринцев B . Γ . Разрешимость векторных задач
о <i>p</i> -центре с помощью алгоритма линейной свертки критериев
Емеличев В. А., Гуревский Е. Е. О радиусе устойчивости эффективного решения
векторной комбинаторной задачи разбиения
Романова М. А. Вычисление пространства максимальных идеалов и границы Шилова
некоторых алгебр обобщенных аналитических функций
<i>Шкут В. В.</i> Особые точки одной кубической двумерной системы, имеющей
частный интеграл в виде алгебраической кривой третьего порядка
Юдин М. Д. О нормальных числах
, , , , , , , , , , , , , , , , , , , ,
ФІЗІКА
Кулак Г. В., Николаенко Т. В., Гуделев В. Г. Оптико-акустическое возбуждение
гиперзвука в твердых телах в режиме лазерного испарения
Шепелевич В. В., Загорский А. Е., Коваршик Р., Кислинг А., Матусевич В. Исследование
распространения двумерных световых пучков в кристалле $Bi_{12}SiO_{20}$ среза $(\overline{1}\ \overline{1}\ 0)$
БІЯЛОГІЯ
Бобрик Т. В. Некоторые биологически активные вещества и микроэлементы в
лекарственных растениях белорусского Полесья
Бодяковская Е. А. Современный энтеросорбент в терапии телят, больных
гастроэнтеритом
Савич И. В., Макаревич Т. А., Остапеня А. П. Структура метафитона и ее динамика
(на примере р. Неман)
Сикорский В. Г., Грицанок М. Ф. Радиоэкологическая характеристика реки Несвич в
белорусском секторе зоны ЧАЭС
Сысова Е. А. Сезонная динамика структуры водорослевых сообществ эпифитона
и литорального планктона
Яблонская И. В. Спектр йододефицитной патологии как показатель йодной
обеспеченности населения юго-востока белорусского Полесья
Яблонская И. В., Валетов В. В. Экологическая оценка суммарного потока йода
поступающего в пищевые цепи населения юго-востока белорусского Полесья
поступающего в пищевые цепи населения юго-востока ослорусского полесья
ГІСТОРЫЯ
Воробьев А. А. Выборы во Всероссийское Учредительное собрание в Мозырском
уезде Минской губернии
Сувалова Е. Н. Национальный вопрос в политической стратегии либеральных
партий в Беларуси (февраль – октябрь 1917 г.)
партии в веларуен (февраль – октяорь 1717 г.)
ФІЛАЛОГІЯ
Аўчарэнка А. М. Беларуская прастора і яе герметычнае вымярэнне ў дэтэктыве
Гончаренко И. Г. Автор, сказ и диалог в трактовке В. В. Виноградова и
М М Баутина

Ковш О. А. Эпистемические глаголы и феномен доверия/недоверия (семантическа	
структура глаголов <i>верить</i> и <i>сомневаться</i>)	
<i>Папіцкая Л. І.</i> Назвы сакавіцкіх прысвяткаў у гаворках Усходняга Палесся	
вытворныя ад іх	
Назараў В. Ф. Эвалюцыя сатыры Андрэя Мрыя ў апавяданнях канца 1920-	
гадоў	
«Пан міністр»	
Романова Л. В. Неоднословные наименования действия как компонент художественног	
текста	
<i>Пузан Л. В.</i> Критерии идентификации процессуальности в семантике абстрактног имени	
Савицкая Л. А. Моделирование и принципы подготовки пресс-релизов государственны	
структур	
Солахаў А. В. Аўтарскія (аказіянальныя) складана-нульсуфіксальныя назоўнікі	
мове беларускай паэзіі 2-ой паловы XX стагоддзя	
Філімонава Н. В. Фразеалагізмы-пажаданні як моўныя знакі нацыянальна	
культуры	•
ПЕДАГОГІКА І ПСІХАЛОГІЯ	
Брель Е. В. Реализация модели формирования аналитических умений школьнико	В
на уроках литературы	
Дорошко Н. В. Проектирование концептуальной модели эвристического обучени	
студентов на предметном уровне: результаты опытно-экспериментальной работы	
Кудан Е. Н. Семья как фактор формирования системы доверительных отношени	
личности (обзор проблематики)	
<i>Лихач Т. П.</i> Языковая личность современного школьника: словообразовательны	
аспект (аналитико-статистический обзор)	
Сак Ю. В. Активные методы обучения в подготовке студентов педагогическог	
факультета к преподаванию основ лыжного спорта	
Свидерская О. И. Развиваем память детей: о некоторых требованиях к подбор	
диагностико-развивающего материала	
Палиева Т. В. Модель билингвального образования дошкольников в условия	
белорусского двуязычия	
Чечко Т. Н. Возможности совершенствования обучения и воспитания студентов	
первокурсников в процессе изучения «Истории древнерусской литературы»	•
ПЕРСАНАЛІІ	
ХРОНІКА	
БІБЛІЯГРАФІЯ	
РЭЦЭНЗІІ118НЄДЄЧ	•••
РЭФЕРАТЫ	· ··
АЎТАРЫ НУМАРА	

М. А. Романова

ВЫЧИСЛЕНИЕ ПРОСТРАНСТВА МАКСИМАЛЬНЫХ ИДЕАЛОВ И ГРАНИЦЫ ШИЛОВА НЕКОТОРЫХ АЛГЕБР ОБОБЩЕННЫХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Впервые рассмотрев в работе [1] обобщенные аналитические функции на пространствах полухарактеров полугрупп, американские математики Р. Аренс и И. Р. Зингер положили начало интересной теории, которая в дальнейшем не осталась незамеченной многими авторами (см., например, монографии [2], [3], а также обзоры [4], [5] и [6]). Целью данной работы является вычисление

пространства максимальных идеалов и границы Шилова алгебры обобщенных аналитических функций. Строго говоря, понятие обобщенной аналитичности, принятое в данной работе, является несколько менее ограничительным, чем в [1], и следует подходу, предложенному в [7].

Всюду ниже S — записываемая мультипликативно дискретная абелева полугруппа с сокращениями и единицей e, не являющаяся группой, $G = S^{-1}S$ — (дискретная) группа частных для S (см., например, [8]).

Полухарактером полугруппы S называется гомоморфизм ψ полугруппы S в мультипликативную полугруппу $\overline{D} = \{z \in C \mid |z| \le 1\}$, не являющийся тождественным нулем. **Характерами** называются полухарактеры, равные по модулю единице.

Множество всех **полухарактеров** полугруппы S далее обозначается \mathfrak{E} , а его подмножество, состоящее из неотрицательных полухарактеров, — \mathfrak{E}_+ . Наделенные топологией поточечной сходимости, это компактные топологические полугруппы по умножению с единицей 1 (\mathfrak{F} компактно как замкнутое подмножество в \overline{D}^S). (Компактную) **группу характеров** полугруппы S будем обозначать X.

Идеал S_0 называется простым, если $S\setminus S_0$ — полугруппа. Таковым идеалом S является ее подполугруппа $S(\rho):=\{s\in S\mid \rho(s)>0\}$. Отметим, что простые идеалы — в точности множества нулей полухарактеров. Простые идеалы, отличные от $S\setminus \{e\}$, будем называть нетривиальными.

Степень ρ^0 по определению есть индикатор носителя ρ и $\rho^z \in \mathcal{F} \setminus X$ при $\rho \in \mathcal{F}_+$, $\rho \neq 1$, $z \in \Pi$, где $\Pi := \{ \operatorname{Re} z > 0 \}$ (см. [1], §7).

Определение 1 [1]. Комплекснозначная функция F на $\mathfrak{F} \setminus X$ называется обобщенной аналитической в смысле Аренса-Зингера, если F может быть равномерно приближена на компактных подмножествах $\mathfrak{F} \setminus X$ функциями вида $\mathfrak{F}(\psi) = \sum_{s \in S} f(s)\psi(s)$, где $f \in l_1(S)$, $\psi \in \mathfrak{F}$.

Равномерную алгебру всех функций, непрерывных на \mathfrak{F} и обобщенных аналитических в смысле Аренса-Зингера, обозначим $A_0(\mathfrak{F})$ (фактически она зависит от S, а не только от \mathfrak{F}).

Определение 2 [7]. Комплекснозначная функция F на $\mathcal{F} \setminus X$ называется обобщенной аналитической, если при ρ , $\psi \in \mathcal{F} \setminus X$, $\rho \geq 0$ функция $z \mapsto F(\rho^z \psi)$ аналитична на Π и непрерывна в +0.

Равномерную алгебру всех функций, непрерывных на \mathfrak{F} и обобщенных аналитических в смысле последнего определения, обозначим $A(\mathfrak{F})$.

Из теоремы 7.4 в [1] сразу следует, что $A_0(S) \subset A(S)$, но строгое включение возможно. Далее нам понадобится следующая

Теорема 1. Пусть $S^{-1} \cap S = \{e\}$. Если существует такой полухарактер $\rho_1 \in \mathcal{S}_+$, что $0 < \rho_1(s) < 1$ при всех $s \in S$, $s \neq e$, то при всех $F \in A(\mathcal{S})$

$$\int_{X} F(\chi) d\chi = F(\omega).$$

Доказательство этой теоремы будет дано в совместной статье автора и А. Р. Миротина «Интерполяционные множества алгебры обобщенных аналитических функций».

Определение 3. Аналитическими полиномами будем называть функции на 🕏 вида

$$p(\psi) := \sum_{i=1}^{n} c_i \mathcal{E}_i(\psi),$$

где
$$c_i \in C$$
 , $\psi \in \mathcal{S}$, $\mathcal{C}_i(\psi) := \psi(a_i)$, $a_i \in S$.

18 ВЕСНІК МДПУ

Определение 4. Будем говорить, что алгебра A(S) обладает свойством полиномиальной аппроксимации, если произвольная функция F из A(S) может быть равномерно приближена на S аналитическими полиномами.

Определение 5 [7]. Полугруппу S будем называть **конусом** в G, если для любого $x \in G$ найдется такой $\rho \in \mathcal{S}_+$, что $\widetilde{\rho}(x) > 1$ ($\widetilde{\rho}$ — продолжение полухарактера ρ на G).

Теорема 2. Предположим, что S есть конус B G U не содержит нетривиальных простых идеалов. Тогда $A(S) = A_0(S)$.

Доказательство. Заметим сначала, что множество A(S) содержится в пространстве $H^2(S \setminus X)$, определенном в [0], т. е. что каждая функция $F \in A(S)$ обладает следующими свойствами:

- 1) для каждого $\rho \in \mathcal{S}_+ \setminus X$ функция $F_\rho : \chi \mapsto F(\rho \chi)$ принадлежит $L^2(X)$ и нормы всех таких функций в $L^2(X)$ ограничены в совокупности;
- 2) для любых ρ , $\rho_1 \in \mathcal{S}_+ \setminus X$ преобразования Фурье функций F_{ρ_1} и $F_{\rho_1 \rho^0}$ совпадают на группе частных полугруппы $S(\rho)$;
 - 3) F обобщенная аналитическая функция в смысле определения 1.

В самом деле, в доказательстве нуждается лишь свойство 2, которое достаточно проверить для единственного полухарактера $\rho = \omega$, принимающего нулевые значения. Но в этом случае оно сразу следует из теоремы 1, примененной к функции $\psi \mapsto F(\rho_1 \psi)$.

Если теперь мы положим $F^* = F \mid X$, то следствие 5.2 из [0] показывает, что спектр (т. е. носитель преобразования Фурье) функции F^* содержится в S . Поэтому для любого $\varepsilon > 0$ найдется аналитический полином p такой, что

$$|p(\chi) - F(\chi)| < \varepsilon$$
 для всех $\chi \in X$.

Пусть $\Phi(\psi) = p(\psi) - F(\psi)$ $(\psi \in \mathcal{S})$, и предположим, что $\max_{\mathcal{S}} |\Phi| = |\Phi(\psi_1)|$, где $\psi_1 = \rho_1 \chi_1$. У нас $\rho_1 \neq 1$; кроме того, мы можем считать, что $\rho_1 \neq \omega$, поскольку в силу теоремы $1 |\Phi(\omega)| \leq \max_{\mathcal{V}} |\Phi|$.

Обозначим через κ отображение множества $\Pi \cup \{0\}$ в \mathfrak{F} , заданное формулой $\kappa(z) = \rho_1^z \chi_1$. Тогда модуль аналитической в Π функции $\Phi \circ \kappa$ достигает своего максимума в точке z=1, а потому $\Phi \circ \kappa = const$ в Π . С учетом непрерывности получаем $\Phi \circ \kappa(0) = \Phi \circ \kappa(1)$, т. е. $\Phi(\psi_1) = \Phi(\chi_1)$, так как у нас $\rho_1^0 = 1$. Таким образом,

$$|p(\psi) - F(\psi)| < \varepsilon$$
 для всех $\psi \in \mathfrak{S}$.

Последнее означает, что алгебра A(S) обладает свойством полиномиальной аппроксимации, т. е. $A(S) \subset A_0(S)$. Обратное включение отмечено выше.

Определение 6 [5]. Слабой оболочкой полугруппы S называется множество

$$[S]_w = \{a \in G \mid \exists m_a \in N : \forall n \geq m_a \ a^n \in S\} \,.$$

Теорема 3. Пусть $[S]_w$ есть конус в G и не содержит нетривиальных простых идеалов. Тогда пространство максимальных идеалов $M_{A(S)}$ алгебры A(S) можно отождествить c S, a ее границу Шилова $\partial_{A(S)} - c$ X.

Доказательству теоремы 3 предпошлем две леммы.

Лемма 1. Отображение сужения $\zeta \mapsto \zeta \mid S$ есть топологический изоморфизм полугруппы полухарактеров (полугруппы неотрицательных полухарактеров, группы характеров) полугруппы S и полугруппы полухарактеров (соответственно полугруппы неотрицательных полухарактеров, группы характеров) полугруппы $[S]_w$.

Доказательство. Рассмотрим отображение $i:[S]_w \to S$, $i(\zeta) = \zeta \mid S$ и докажем, что оно осуществляет требуемый изоморфизм.

1. Для доказательства сюрьективности воспользуемся полярным разложением $\psi = \rho \chi$ $(\rho \in \mathcal{S}_+, \chi \in X)$, справедливым для любого полухарактера $\psi \in \mathcal{S}$.

Характер χ продолжается до характера группы частных $S^{-1}S$ по формуле $\widetilde{\chi}(a^{-1}b):=\chi(a)\chi(b)$.

Покажем, что это определение корректно. Пусть $x=a^{-1}b=c^{-1}d$, тогда cb=ad. Следовательно, $\chi(cb)=\chi(ad)$, т. е.

$$\chi(c)\chi(b) = \chi(a)\chi(d)$$
.

A это значит, что $\chi(a)\chi(b)=\chi(c)\chi(d)$.

Далее, $\widetilde{\chi}$ – гомоморфизм, так как

$$\widetilde{\chi}(xy) = \widetilde{\chi}(a^{-1}bc^{-1}d) = \widetilde{\chi}((ac)^{-1}bd) = \overline{\chi(ac)}\chi(bd) = \overline{\chi(a)}\chi(b)\overline{\chi(c)}\chi(d) = \widetilde{\chi}(x)\widetilde{\chi}(y).$$

Очевидно, что $|\widetilde{\chi}(a^{-1}b)| = 1$. Следовательно, $\widetilde{\chi}$ – характер.

Положим, $\chi_w = \widetilde{\chi} \mid [S]_w$. Тогда χ_w является характером полугруппы $[S]_w$. Таким образом, каждому характеру χ полугруппы S сопоставляется характер χ_w слабой оболочки такой, что $\chi_w \mid S = \chi$.

Для любого $a\in [S]_w$ положим, $\rho_w:=\sqrt[n]{\rho(a^n)}$, где $a^n\in S$, $n\in N$. Это определение корректно, так как

$$\sqrt[n]{\rho(a^n)} = \sqrt[n(n+k)]{\rho(a^n)^{n+k}} = \sqrt[n(n+k)]{\rho(a^{n(n+k)})} = \sqrt[n(n+k)]{\rho(a^{n+k})^n} = \sqrt[n+k]{\rho(a^{n+k})}.$$

Покажем, что ρ_w – гомоморфизм. Возьмём натуральное n такое, что $a^n \in S$ и $b^n \in S$. Тогда

$$\rho_{w}(ab) = \sqrt[n]{\rho((ab)^{n})} = \sqrt[n]{\rho(a^{n}b^{n})} = \sqrt[n]{\rho(a^{n})} \sqrt[n]{\rho(b^{n})} = \rho_{w}(a)\rho_{w}(b).$$

Очевидно, что $0 \le \rho_w \le 1$, так как $0 \le \rho \le 1a$.

Следовательно, $\, \rho_{_W} \,$ – неотрицательный полухарактер слабой оболочки и $\, \rho_{_W} \, | \, S = \rho \,$.

Таким образом, мы построили полухарактер $\psi_w := \rho_w \chi_w$ полугруппы $[S]_w$ такой, что $i(\psi_w) = \psi$.

- 2. Инъективность. Рассмотрим произвольные полухарактеры ζ_1 , $\zeta_2 \in [S]_w$ такие, что $\zeta_1 \neq \zeta_2$, т. е. $\exists a \in [S]_w$ что $\zeta_1(a) \neq \zeta_2(a)$. Допустим $\zeta_1(x) = \zeta_2(x)$ для любого $x \in S$. Тогда $\zeta_1(a^n) = \zeta_2(a^n)$ при $a^n \in S$. А это значит, что $\zeta_1(a)^n = \zeta_2(a)^n$. Следовательно, $\zeta_1(a) = \zeta_2(a)$. Противоречие.
 - 3. Отображение i является гомоморфизмом, так как для любых $\zeta_1, \ \zeta_2 \in [S]_w$ имеем

$$i(\zeta_1\zeta_2) = (\zeta_1\zeta_2) \mid S = \zeta_1 \mid S \ \zeta_2 \mid S = i(\zeta_1)i(\zeta_2) \,.$$

20 ВЕСНІК МДПУ

4. Наконец, так как O_y является взаимно однозначным и, очевидно, непрерывным отображением компакта $[\mathcal{E}]_w$ на компакт \mathcal{E} , то i – гомеоморфизм.

Для полугрупп неотрицательных полухарактеров и групп характеров доказательство аналогично. \Box

Определение 7. Для любого x из $[S]_w$ определим $\mathfrak{E}(\psi) := \psi_w(x)$.

Следствие. $Ecnu\ A(S) = A_0(S)$, mo $S = [S]_w$.

Доказательство. Пусть $S \neq [S]_w$, $x \in [S]_w \setminus S$. Тогда функция $\pounds(\psi)$, как легко проверить, принадлежит A(S), но не принадлежит $A_0(S)$, поскольку преобразование Фурье ее сужения на X сосредоточено на множестве $\{x\}$. \square

Лемма 2. Алгебра A(S) изометрически изоморфна алгебре $A([S]_w)$.

Доказательство. Покажем, что искомым изоморфизмом служит отображение $i:A(S) \to A([S]_w)$, определяемое равенством $i*(F):=F \circ i$, где i – отображение, построенное в доказательстве леммы 1. Таким образом, для $\zeta \in [S]_w$ имеем $i*(F)(\zeta) = F(i(\zeta)) = F(\zeta \mid S)$.

При $F \in A(S)$ отображение i*(F) непрерывно на $[S]_w$ и для любых не являющихся характерами $\rho, \ \psi \in [S]_w$, $\rho \geq 0$, $z \in \Pi$

$$i * (F)(\rho^z \psi) = F(i(\rho^z \psi)) = F((\rho^z \psi) | S) = F(\rho_1^z \psi_1),$$

где $\rho_1=\rho\mid S$, $\ \psi_1=\psi\mid S$. Следовательно, $i*(F)\in A([S]_w)$.

Докажем инъективность i*. Рассмотрим F_1 , $F_2 \in A(S)$ такие, что $F_1(\psi) \neq F_2(\psi)$ при некотором $\psi \in S$. Из доказательства сюрьективности в лемме 1 следует, что существует ζ — продолжение ψ на $[S]_w$. Допустим, что $i*(F_1)(\zeta) = i*(F_2)(\zeta)$, тогда $F_1(\psi) = F_2(\psi)$. Противоречие.

Для доказательства сюрьективности для каждой функции H на $[S]_w$ определим функцию F на S следующим образом: $F(\psi) = H(\psi_w)$. Корректность этого определения следует из инъективности отображения i. Таким образом,

$$i * (F)(\psi_w) = F(i(\psi_w)) = F(\psi_w \mid S) = F(\psi) = H(\psi_w).$$

Так как $F(\rho^z \psi) = H(\rho_w^z \psi_w)$, то F принадлежит A(S).

Для $\zeta \in [S]_w$ имеем

$$i*(F_1F_2)(\zeta) = F_1F_2(i(\zeta)) = F_1F_2(\zeta \mid S) = F_1(\zeta \mid S)F_2(\zeta \mid S) = F_1(i(\zeta))F_2(i(\zeta)) = i*(F_1)(\zeta)i*(F_2)(\zeta).$$

Последнее означает гомоморфность i*.

Докажем изометричность. Имеем

$$\parallel i * (F) \parallel = \max\{\mid F(\zeta \mid S) \parallel \zeta \in [S]_{W}\} = \max\{\mid F(\psi) \parallel \psi \in S\} = \parallel F \parallel.$$

Доказательство теоремы 3. Допустим, что полугруппа $[S]_w$ не содержит нетривиальных простых идеалов и является конусом в группе G. Тогда из теоремы 2 следует, что $A([S]_w) = A_0([S]_w)$. Но для алгебры $A_0([S]_w)$ известно, что пространство максимальных идеалов $\mathbf{M}_{A_0([S]_w)}$ изоморфно $[S]_w$ и граница Шилова $\hat{\sigma}_{A_0([S]_w)}$ изоморфна X_w , где X_w –

MATЭMATЫKA 21

группа характеров $[S]_w$. Следовательно, пространство максимальных идеалов $\mathbf{M}_{A([\pounds]_w)}$ можно отождествить с $[\pounds]_w$, а границу Шилова $\partial_{A_0([\pounds]_w)} - \mathbf{c} \ X_w$. Используя лемму 2, получаем утверждение теоремы. \square

Определение 8. Обобщенными аналитическими полиномами будем называть функции на f вида

$$p*(\psi) := \sum_{i=1}^n c_i \mathfrak{K}_i(\psi),$$

где $c_i \in C$, $\psi \in \mathcal{S}$, $x_i \in [S]_w$.

Определение 9. Будем говорить, что алгебра A(S) обладает свойством слабой полиномиальной аппроксимации, если произвольная функция F из A(S) может быть равномерно приближена на S обобщенными аналитическими полиномами.

Теорема 4. Пусть алгебра A(S) обладает свойством слабой полиномиальной аппроксимации. Тогда пространство максимальных идеалов $\mathbf{M}_{A(S)}$ этой алгебры можно отождествить с S, а ее границу Шилова $\hat{\sigma}_{A(S)} - c \ X$.

Доказательство. Для $\varphi \in M_{A(S)}$ положим $\zeta(x) := \varphi(S)$, $x \in [S]_w$. Тогда $\zeta \in [S]_w$, причем $\pounds(\zeta \mid S) = \varphi(S)$. Если $p^* = \sum_{i=1}^n c_i \pounds_i$ ($c_i \in C$, $x_i \in [S]_w$) — обобщенный аналитический полином, то

$$\varphi(p^*) = \sum_{i=1}^n c_i \varphi(\mathfrak{L}_i) = \sum_{i=1}^n c_i \mathfrak{L}_i(\zeta \mid S) = p^*(\zeta \mid S).$$

Для произвольной функции F из A(S) имеем $F = \lim_{n \to \infty} p_n *$, где $p_n *$ – обобщенные аналитические полиномы. Поэтому

$$\varphi(F) = \lim_{n \to \infty} \varphi(p_n^*) = \lim_{n \to \infty} p_n^* (\zeta \mid S) = F(\zeta \mid S).$$

Рассмотрим отображение $\Lambda: \mathscr{E} \to \mathrm{M}_{A(\mathscr{E})}$, которое каждому ψ из \mathscr{E} сопоставляет комплексный гомоморфизм φ_{ψ} из $\mathrm{M}_{A(\mathscr{E})}$ по формуле $\varphi_{\psi}(F) = F(\psi)$. Тогда Λ – гомеоморфизм. Действительно, если ψ_1 , $\psi_2 \in \mathscr{E}$, $\psi_1 \neq \psi_2$, то $\varphi_{\psi_1}(\mathscr{E}) \neq \varphi_{\psi_2}(\mathscr{E})$ для некоторого $a \in S$. К тому же отображение Λ является сюрьективным по доказанному выше. Таким образом, оно биективно. Для доказательства его непрерывности рассмотрим последовательность $\psi_n \in \mathscr{E}$, сходящуюся к $\psi \in \mathscr{E}$. Тогда $\Lambda(\psi_n)$ сходится к $\Lambda(\psi)$, так как при $F \in A(\mathscr{E})$ имеем $\varphi_{\psi_n}(F) \to \varphi_{\psi}(F)$ в силу непрерывности F. Поскольку \mathscr{E} – компакт, то Λ – гомеоморфизм.

Докажем второе утверждение теоремы. Покажем сначала, что $\partial_{A(f)} \subset X$. Для этого достаточно доказать, что X является границей. Если это не так, то

$$M := \max_{\epsilon} |F| > m := \max_{X} |F|$$

для некоторой функции $F \in A(\mathcal{S})$. Для $\varepsilon < (M-m)/2$ подберем аналитический полином p* таким образом, чтобы $\max_{\mathcal{S}} |F-p*| < \varepsilon$. Тогда $|p*(\chi)| < |F(\chi)| + \varepsilon \le m + \varepsilon$ при всех $\chi \in X$. Напомним, что для произвольного $\psi \in \mathcal{S}$ $p*(\psi) := \sum_{i=1}^n c_i \pounds_i(\psi)$. Рассмотрим $f \in \ell_1([S]_w)$

такую, что $f(x) = c_i$, если $x = x_i$, f(x) = 0 — в противном случае. Тогда $p(\psi) = \mathcal{F}(\psi_w)$. Далее из теоремы 3.4 в [1] известно, что $\mathbf{M}_{\ell_1([S]_w)} = [\mathcal{F}]_w$, $\partial_{\ell_1([S]_w)} = X_w$. Поэтому в силу леммы 1

$$\max_{\psi \in \mathcal{S}} \mid p * (\psi) \mid = \max_{\psi \in \mathcal{S}} \mid \mathcal{F}(\psi_w) \mid = \max_{\zeta \in [\mathcal{S}]_w} \mid \mathcal{F}(\zeta) \mid = \max_{\xi \in X_w} \mid \mathcal{F}(\xi) \mid = \max_{\xi \in X} \mid p * (\xi \mid S) \mid = \max_{\chi \in XS} \mid p * (\chi) \mid.$$

Таким образом, $\max_{\mathfrak{E}} \mid p^* \mid \le m + \varepsilon$.

С другой стороны, $|p^*(\psi)| < |F(\psi)| - \varepsilon$ при всех $\psi \in \mathcal{F}$, а потому $\max_{\mathcal{F}} |p^*| \ge M - \varepsilon$, что противоречит выбору ε . Это доказывает требуемое включение.

Наконец, так как алгебра $A(\mathcal{S})$ инвариантна относительно естественного действия группы X (умножения на характеры являются автоморфизмами полугруппы \mathcal{S}), то такова и ее граница Шилова, а потому эта граница совпадает с X. \square

Литература

- 1. Arens, R. Generalised analytic functions / R. Arens, I. M. Singer // Trans. Amer. Math. Soc. 1956. Vol. 81, № 2. P. 379–393.
 - 2. Гамелин, Т. Равномерные алгебры / Т. Гамелин. М.: Мир, 1973. 336 с.
 - 3. Rudin, W. Fourier analysis on groups / W. Rudin. N.Y.: Interscience Publishers, 1962. 285 p.
- 4. Helson, H. Analyticity on compact abelian groups / H. Helson // Algebras in analysis: proceedings of instructional conference and NATO advanced Study Institute, Birmingem, 1973 / Kluwer; H. Helson, ed. London, 1975. P. 1–62.
- 5. Toney, T. Analytic functions on compact groups and their applications to almost periodic functions / T. Toney, S. A. Grigoryan // Amer. Math. Soc. 2003. Vol. 328, № 2. P. 299–322.
- 6. Grigoryan, S. A. Shift-invariant algebras on groups / S. A. Grigoryan, T. Tonev // Amer. Math. Soc. 2004. Vol. 3636, N0 1. P. 111–127.
- 7. Миротин, А. Р. Теорема Пэли-Винера для конусов в локально компактных абелевых группах / А. Р. Миротин // Известия высших учебных заведений. Математика. 1995. № 3. С. 35–44.
- 8. Клиффорд, А. Алгебраическая теория полугрупп : в 2 т. / А. Клиффорд, Г. Престон. М. : Наука, 1972. Т. 1. 285 с.

Summary

Spaces of maximal ideals and Shilov's boundaries of some uniform algebras of generalised analytic functions have been calculated.