Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова»

ХІ МАШЕРОВСКИЕ ЧТЕНИЯ

Материалы международной научно-практической конференции студентов, аспирантов и молодых ученых

Витебск, 18 октября 2017 г.

Витебск ВГУ имени П.М. Машерова 2017 УДК 378.147.88(063)+378.4(476.5)(063) ББК 74.480.278я431+74.483(4Беи-4Вит)я431 О-42

Печатается по решению научно-методического совета учреждения образования «Витебский государственный университет имени П.М. Машерова». Протокол № 5 от 19.06.2017 г.

Редакционная коллегия: И.М. Прищепа (главный редактор), И.А. Красовская, М.Л. Дорофеенко, А.П. Косов, В.Л. Пугач, Г.В. Разбоева

Рецензенты: канд. биол. наук, доцент В.Я. Кузьменко; канд. ист. наук, доцент А.Н. Дулов; доктор физ.-мат. наук, профессор Н.Т. Воробьев; канд. психол. наук, доцент С.В. Лауткина; доктор пед. наук, доцент С.В. Николаенко; доктор филол. наук, профессор А.М. Мезенко; канд. юрид. наук, доцент И.И. Шматков

VI Машеровские чтения: материалы международной научно-практической конференции студентов, аспирантов и молодых ученых, Витебск, 18 октября 2017 г. / Витеб. гос. ун-т; редкол.: И.М. Прищепа (гл. ред.) [и др.]. – Витебск: ВГУ имени П.М. Машерова, 2017. – 543 с. ISBN 978-985-517-629-0.

В сборник включены материалы, представленные авторами на международной научно-практической конференции студентов, аспирантов и молодых ученых «XI Машеровские чтения», посвященные решению актуальных научных проблем по естественным, техническим, гуманитарным наукам, а также методикам их преподавания. Материалы могут быть использованы научными работниками, преподавателями, аспирантами и студентами учреждений высшего образования, учителями гимназий и школ.

УДК 378.147.88(063)+378.4(476.5)(063) ББК 74.480.278я431+74.483(4Беи-4Вит)я431

МОРФОМЕТРИЧЕСКАЯ ХАРАКТЕРИСТИКА БЕСКРЫЛЫХ ПАРТЕНОГЕНЕТИЧЕСКИХ САМОК АЛЫЧОВОЙ ТЛИ (BRACHYCAUDUS DIVARICATAE SHAP.)

ПО МАТЕРИАЛАМ, СОБРАННЫМ НА ТЕРРИТОРИИ БЕЛАРУСИ Воробьева М.М.

аспирант БГУ, г. Минск, Республика Беларусь Научный руководитель – Воронова Н.В., канд. биол. наук, доцент

Алычовая тля (*Brachycaudus divaricatae* Shaposhnikov, 1956) является факультативно мигрирующим видом, первичным кормовым растением которого является алыча, или слива растопыренная (*Prunus divaricata* Ldb. syn. *Prunus cerasifera* Ehrh). Исходно ареал *B. divaricatae* был ограничен Закавказьем и прилегающими регионами Малой, Передней и Средней Азии [1, 2]. В последние десятилетия вид осуществил экспансию в Центральную и Восточную Европу. Для Беларуси *B. divaricatae* был впервые указан в 2008 г., а к настоящему времени распространился по всей ее территории [3]. При этом инвазия, предположительно, могла осуществляться одновременно с южного и западного направлений. Оценка уровня морфометрической изменчивости тлей и гомогенности инвазивных популяций по данному признаку представляют интерес с точки зрения изучения направления и силы отбора, которому подвергаются чужеродные виды на новых для себя территориях.

Цель исследования – изучить уровень морфологической пластичности инвазивных видов тлей на новой территории, выбрав в качестве целевого объекта *B. divaricatae*.

Материал и методы. Сбор бескрылых партеногенетических самок был осуществлен с алычи на территории всех административных областей Республики Беларусь в период

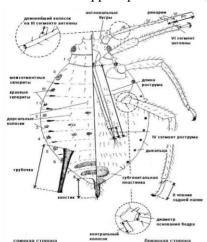


Рисунок 1 — Схема съемки морфометрических промеров бескрылых самок тлей

2010—2012 гг. Образцы хранили в 75% растворе этанола. Препараты изготавливали в заключающей среде Фора-Берлезе. Измерения производили с тотальных препаратов с использованием микроскопа Carl Zeiss Stemi 2000, оснащенного окуляр-микрометром. Помимо собственно промеров использовали морфометрические индексы (рисунок 1).

Результаты и обсуждение. Данные выполненной съемки морфометрических параметров обработаны методами описательной статистики (таблица 1). Особого внимания заслуживают диагностирующие морфометрические индексы, используемые для видового разграничения тлей рода *Brachycaudus* Van der Goot, в частности, это длина трубочек (SIPH = 0,1ч0,4 мм) и длина тела (BL = 1,8ч2,6 мм).

Кроме этого, диагностирующим индексом является отношение длины трубочек к длине тела (SIPH/BL), равное 0,05ч 0,10 и шпица последнего сегмента антенн к длине III сегмента антенны PT/ANTVIb, равное 2,0. Значения индек-

са, представляющего собой отношение длины трубочки (SIPH) к длине тела (BL) варьировали в

пределах значений, типичных для рода от 0,04 мм до 0,19 мм со средним значением равным 0,09 мм, отношение длины шпица последнего сегмента к длине III сегмента антенны (РТ/ANTIII) – от 2,97 до 5,95 мм (со средним значением равным 4,77 мм), а длины апикального сегмента рострума к длине II сегмента задней лапки (URS/2HT) – от 0,80 до 1,75 мм (1,17 мм). Визуализация полученных значений морфометрических параметров, вовлеченных в исследование экземпляров бескрылых партеногенетических самок *В. divaricatae* представлена на диаграммах рассеивания (рисунки 2, 3).

Таблица 1 – Средние диапазоны значений морфометрических параметров для *Brachycaudus*

divaricatae, коллектированных на территории Республики Беларусь

Морфологические характеристики	Шифр	Значения, мм
11 1		минмакс. (ср.)
Длина тела (включая хвостик)	BL	1,80-2,62 (2,21)
Длина III сегмента антенны	ANTIII	0,26-0,58 (0,45)
Длина IV сегмента антенны	ANTIV	0,19-0,40 (0,30)
Длина V сегмента антенны	ANTV	0,13-0,27 (0,21)
Длина основания VI сегмента антенны	ANTVIb	0,09-0,15 (0,11)
Длина шпица последнего сегмента антенн	PT	0,35-0,66 (0,53)
Общая длина антенны	ANT	1,18-2,18 (1,79)
Длина апикального сегмента рострума (IV сегмента хоботка)	URS	0,12-0,22 (0,17)
Длина II сегмента задней лапки	2HT	0,12-0,17 (0,15)
Длина трубочки	SIPH	0,10-0,39 (0,21)
Длина хвостика	CAUDA	0,15-0,31 (0,21)

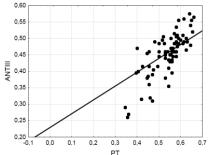


Рисунок 2 — Диаграмма рассеивания индивидуальных значений длины шпица последнего сегмента антенн (РТ) и длины III сегмента антенны (ANTIII) бескрылых самок *Brachycaudus divaricatae*

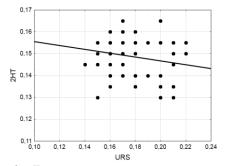


Рисунок 3 — Диаграмма рассеивания индивидуальных значений длины апикального сегмента рострума (URS) и длины II сегмента задней лапки (2HT) бескрылых самок *Brachycaudus divaricatae*

Графическое отображение результатов позволяет констатировать стандартный уровень разброса данных.

Кроме выше представленных индексов, используемых для идентификации видов рода *Brachycaudus*, в рамках настоящего исследования были рассчитаны значения, позволяющие оценить уровень сходства/различия внутри популяции инвайдера (таблица 2).

Таблица 2 – Значения морфометрических индексов для бескрылых партеногенетических самок *Brachycaudus divaricatae*, коллектированных на территории Беларуси

Морфометрические индексы	Средние и диапазоны значений (минмакс.)	
ANTVIb/ANTIII	0,20-0,43 (0,26)	
PT/ANTVIb	2,97–5,95 (4,77)	
URS/ANTVIb	1,09–2,01 (1,53)	
SIPH/CAUDA	0,50–2,27 (1,01)	

Заключение. Таким образом, морфометрические характеристики, полученные для бескрылых партеногенетических самок *B. divaricarae*, коллектированных на территории Беларуси, варьируют в пределах значений, типичных для этого вида. Не обнаружено экземпляров, демонстрирующих заметно уклоняющиеся от типичных значений морфометрических параметров как

это можно было бы ожидать в популяции инвайдеров при условии действия движущего отбора. В дальнейшем полученные данные могут быть использованы для проведения сравнительного сопоставления с выборками для географически удаленных территорий.

Исследования выполнены в рамках НИР «Изучение морфологической и генетической изменчивости инвазивных видов тлей на новой территории (на примере Brachycaudus divaricatae Shap., 1956, коллектированных на территории Беларуси)», поддержанной грантом Министер-

- ства образования Республики Беларусь.

 1. Rakauskas, R. *Brachycaudus divaricatae* Shaposhnikov, 1956 in Europe: biology, morphology and distribution, with comments on
- its taxonomic position (Hemiptera, Sternorrhyncha: Aphididae) // R. Rakauskas, J.Turuinaviuine // Zoologische Reihe. 2006. Vol. 82. P. 248–260.

 2. Воробьева, М.М. Предварительные результаты изучения уровня генетического сходства инвазивных и аборигенных популяций алычовой тли (*Brachycaudus divaricatae* Shap., 1956) / М.М. Воробьева, Н.В. Воронова, С.В. Буга // Вестник БГУ. Серия 2. –
- 2015. № 3. C. 49–55.

 3. Buga, S.V. Aphids of the tribe Macrosiphini (Insecta: Homoptera: Aphididae) in Belarus / S.V. Buga, A.V. Stekolshchikov // Zoosystematica Rossica. 2012. Vol. 21, n 1. P. 63–96.
- 4. Aphids on the World's Plants: An online identification and information guide [Electronic resource] / Ed. R. Blackman. London: Natural History Museum, 2012. Mode of access: http://www.aphidsonworldsplants.info. Date of access: 25.08.2017.

СОДЕРЖАНИЕ

Развитие теории математического моделирования прикладных задач,
ее приложения в образовании и производственных процессах
Алантьев Д.С. Использование программы «Fractal plus» для построения фрактальных
объектов
Алейников М.А., Хапанков В.И. Использование компьютерной графики при решении
задач на проекционных чертежах
Ашыров А.А. О начально-краевой задаче для параболического уравнения с нелинейны-
ми нелокальными граничными условиями Неймана
Боровский А.С. Использование современных программных средств в качестве инстру-
мента для разработки программы создания видеоуроков
Варонін А.М. Аб інтэгральным выяўленні кватэрніённых F-манагенных функцый
Василевич Т.Б. О локальных заданиях множеств Хартли
Васильева М.О. Использование среды «Живая Геометрия» при обучении построению
сечений многогранников
Дерунова В.Л. Применение метода координат при решении стереометрических задач
Каплун А.А. Разработка программного средства для работы с QR-кодами
Кизина О.А. Моделирование процесса взаимодействия эпоксидной смолы с СВЧ-полем
средствами CST Microwave Studio
Козлов А.А., Бурак А.Д. Глобальная управляемость верхнего особого показателя Боля
трехмерных линейных систем с локально интегрируемыми коэффициентами и наблю-
дателем
Козлов А.А. Задачи управления асимптотическими характеристиками линейных систем
с локально интегрируемыми коэффициентами малых размерностей
Курносенко А.С. Использование современных программных средств в качестве инстру-
мента для разработки текстового редактора с подсветкой синтаксиса
Ласточкин А.Н. Моделирование свойств композиционных материалов
Литвинов А.В. Оптимизация управления сервоприводом
Марцинкевич А.В. О свойствах π -квазинормальных классов Фиттинга
Плотницкая И.В. Подготовка учащихся основной школы к решению практических за-
дач по геометрии
Прилепо Ю.А. Визуализация амплитудного сигнала с микрофонного входа
Прудникова Н.А. Использование программных средств для решения транспортной
задачи
Свинарский М.В., Зайко Е.В. Использование данных вторичной обработки в интересах
решения задачи адаптации к условиям наблюдения радиолокационной цели
Сенько Е.В. Методы прикладной статистики в диагностике артериальной гипертензии
Цуприк С.В., Солонар А.С. Обобщенная структура оптико-локационного координатора
воздушного базирования для беспилотного летательного аппарата
Чернявский М.М. Метод мажорантных уравнений Л.В. Канторовича для решения мат-
ричных нелинейных уравнений
Чернявский М.М., Якуто К.Л. Об одном алгоритме приближенного нахождения реше-
ния алгебраического уравнения пятой степени
Чигирь И.В., Кузьмичев Н.К. Математическая модель комбинированной имитирующей
маскирующей помехи для импульсно-доплеровских РЛС точного измерения координат
Якуто К.Л. О решении нелинейного матричного уравнения $X^2 = A$
Якуто К.Л. О целом положительном симметричном решении матричного уравнения
$X^{n} = A$ для матриц третьего порядка
Янцевич М.А., Свириденко А.А. Применение обобщенной матрицы рассеяния для согласования распределенных нагрузок IV класса
гласорания распреденных нагрузок IV класса

Эколого-биологическое и географическое обоснование рационального использования ресурсного потенциала и охраны окружающей среды

Авласевич О.В., Леонович Е.А. Антиоксидантные показатели водных экстрактов (1:5)
листьев раннецветущих растений
Авласевич О.В., Пузыревская В.Ф. Антиоксидантная активность водных экстрактов
раннецветущих растений при разведении 1:5
Брюквина А.А. Туристические объекты заказника «Освейский»
Ваштаенок Е.В. Пространственные особенности гастрономического туризма Франции 53
Воробьева М.М. Морфометрическая характеристика бескрылых партеногенетических
самок алычовой тли (Brachycaudus divaricatae Shap.) по материалам, собранным на тер-
ритории Беларуси
Галаенко И.И. Влияние изменения климата на биологическое разнообразие Республики
Беларусь
<i>Гладкая И.Н.</i> Оценка комфортности климатических условий г. Витебска за 2016 год 59
Дивульская Н.Н. Оценка флуктуирующей асимметрии древесного растения березы по-
вислой в условиях города Полоцка
Дубко А.И. Флористический состав растительных сообществ с участием Solidago
Canadensis L. в пределах города Витебска
Еремова Т.Р. Экологический анализ и порядок обращения с отходами производства на
примере строительного предприятия «ЧУП НАСТАТ-ДЕНТ»
Зайцева В.В., Овчинникова А.А. Влияние гипертермии разной продолжительности на
содержание ТБК-активных продуктов в гепатопанкреасе пресноводных легочных мол-
люсков
<i>Кацнельсон Е.И., Цапко Г.В.</i> Содержание РНК в гепатопанкреасе легочных моллюсков,
обитающих в природных водоемах
Ковалевская Н.А. Лабораторные исследования процессов углеводородного загрязнения
почв
Кулешова О.С. Процессированные псевдогены EF1a у тлей
Курносова О.А. Определение качества воды в реке Лучоса с помощью метода биоинди-
кации
Левша А.И. Динамика населения мелких млекопитающих в лесах Витебской области 72
Левша А.И. Зависимость структуры сообществ мелких млекопитающих от типа леса 74
Леонович Е.А., Юрченко А.В. Неферментативная антиоксидантная активность спирто-
вых экстрактов раннецветущих растений
<i>Мазуркевич О.Ю.</i> Алгоритм поиска сайтов рестрикции в нуклеотидной последователь-
ности для разработки программ, предназначенных для <i>in-silico</i> построения электрофоре-
тических карт
Масловская А.В. Разработка компьютерного модуля для визуализации результатов по-
строения рестрикционных карт
Мялик А.Н. Особенности сорного компонента во флоре Белорусского Полесья
Новикова Ю.И. Инвентаризация и анализ состояния колоний борщевика Сосновского
на территории административного района с помощью ГИС
Пирханов Г.Г., Леонов А.Ю., Кисова А.С. Экстракция ДНК и выявление внутривидово-
го полиморфизма Solidago gybrida Hort. с помощью RAPD-диагностики
Полозова Н.Ю., Токмакова А.П. Содержание малонового диальдегида в гепатопанкриа-
се прудовика обыкновенного (<i>Lymnea stagnalis</i>)
Сироткина Д.П. Бактерии рода Regiella как превалирующий эндосимбионт тлей
Macrosiphum gei Koch фауны Беларуси
Ткачев В.А. Рациональное использование природных ресурсов Пустошкинского района:
проблемы и перспективы развития
Федорова О.Г. Анализ населения, структуры и биоразнообразия сообщества птиц от- крытых верховых болот
NUDITDIA DUNAUDDIA UUNUT