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THE OPTIMALITY OF SOFTWARE RESOURCES STRUCTURING 
THROUGH THE PIPELINE DISTRIBUTED PROCESSING OF 

COMPETITIVE COOPERATIVE PROCESSES 

Pavlov P.A. 

Polesky state university, Pinsk, Belarus  

 
In different spheres of human activities one has regularly to face important 

problems the effective solution of which is connected with paralleling of 
computational processes. The solution of such problems «unites the information 
from the following areas: architecture of computers and computing systems, 
system programming and programming languages, various methods of 
information processing, etc.» [1]. With appearance and usage of scalable systems 
many problems of parallel computing should be reconsidered. It's also necessary 
to have a look in a new way at the principles of computing; at the provision of 
univocal results of program run; at the efficient planning and distribution of 
concurrent processes [2]. In connection with it, modeling and research of 
simulators of parallel distributed processes, based on paralleling and pipelining, 
gain special currency. 
1. The simulator of distributed processing of competitive processes. The 
structural elements for modeling simulators of distributed computing systems are 
concepts of process and software resource. As in [3], the process will be 

regarded as a sequence of blocks (commands)  which are 

executed with the help of different processors. If all the blocks or part of them 
are executed by different processors then this process is distributed. To 
accelerate the execution the processes can be handled across interacting by 
means of information exchange. Such processes are called cooperative or 
interacting processes. 

1 2Q , Q , ..., Qs

s

The concept of resource is used to identify any objects of computer system 
which can be used by the processes for the execution. Re-entrant resources are 
characterized by the opportunity to use several processes simultaneously. As for 
parallel systems, their characteristic feature is the situation when one and same 
sequence of blocks should be executed by processors multiply. This sequence 
will be called a software resource (SR) and a set of appropriate processes will be 
called competitive ones. 

As in the works [3–5] a simulator of distributed processing of competitive 
processes involves p processors of multiprocessing system (MS), n competitive 

processes, s blocks  structured into the blocks of software 

process, the matrix 
1 2Q , Q , ..., Q

d ijT [t ]  of time execution software resource blocks by 

distributed competitive processes. The specified parameters keep changing in the 
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range of p 2 , , , n 2 s 2 1 i n 

0

, . Let's suppose that all n 

processes use one copy of structured into blocks SR, and a full order of their 
execution is installed at a set of blocks. 

1 j s 

Let's examine the parameter   which characterizes the time (system 
costs) spent by MS to organize parallel execution of SR blocks by a set of 
distributed competitive processes. In what follows we'll say that the above – 
listed objects of the simulator form a system of distributed competitive 
processes. 

Definition 1. The system n of distributed competitive processes is called 

multivendor if the time execution of software resource blocks  

depends on the volume of processing data and/or their structure, i.e. different 
processes. 

1 2Q , Q , ..., Qs

Definition 2. The system n of distributed competitive processes is called 
homogeneous if the time execution of software resource blocks by each of 

competitive processes  equals, i.e. ij jt t , i 1,n , j 1,s . 

Let's consider that the interaction of processes, processors and blocks is 
submitted to the following terms [3–7]: 1) none of the software resource blocks 
can be handled simultaneously by more than one processor; 2) none of the 
processors can handle simultaneously more than one block; 3) each block 
processing is executed without interrupt; 4) the distribution of software resource 
blocks among the processors for each of the processes is executed in cycles 

according to the rule: block number , j kp i  j 1,s , i 1, p , , is 

distributed to processor number i. 

k 0

In addition, let's introduce some further conditions, which define the modes 
of interaction of processes, processors and blocks: 5) there's no downtime in the 
processors on conditions that the blocks are ready as well as non–fulfilment of 
the blocks when processors are available; 6) for each of n processes the terminal 
time of software resource block at the competitive processor coincides with the 
beginning of execution of the next software resource block at the next 

competitive processor, i 1, p 1  , j 1,s 1  ; 7) for each block the moment of 

completion of its execution by process l coincides with the beginning of its 

execution by process l+1 at the same processor, l 1,n 1  . 

Conditions 1–5 define an asynchronous mode of the interaction of 
processors, processes and blocks, which means the absence of time–out of 
processors on the condition that the block is ready as well as block failure if 
processors are available. 
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If we add condition 6 to conditions 1–4 we'll get the first synchronous 
operation which supplies continuous execution of blocks of a software resource 
inside each process. 

The second synchronous operation defined by conditions1–4, 7 provides 
continuous execution of each block by all the processes. 

2. Software execution time of distributed competitive processes. In [3–4] 
there have been explored basic asynchronous and synchronous operations which 
appear when distributed processes in terms of competitive environment for 
common software resources are organized. Within the bounds of these operations 
there've been received mathematical relations for computing the meaning of 
minimum general time of execution of heterogeneous distributed competitive 
processes in case of limited (s  and unlimited p) (s p)   parallelism according 

to the amount of processors of multiprocessor. 
Let’s consider a homogeneous system of distributed competitive processes. 

Let 1 2 st , t , , t    of execution of each block , jQ j 1,s , by a SR with an 

allowance for the parameter 0 . If s p  for computing minimum general 

time in the asynchronous operation  ,as
dhT p,n,s   and in the first synchronous 

operation 1
dhT p,n ,s,  we’ll have:  ,  

s

j j
j 1 1 j s

t n 1 max t
 

  as,1
dh ,sT p,n



  . 

Let's consider the case when s kp , , and introduce the following 

designations (symbols): 

k 1
,l

j (t t l 1)p j      – the time of execution of software 

resource block of group l of all n processes, j 1, p , l 1,k ;  
p

,l
l j

1 j p
j 1

T t (n 1)m
 



   ,l
jax t   –  the total time of execution of the l–group of blocks 

by all n processes at t processors, l 1,k ; 
j

j ,l
l w

1 w p
w 1

E t (n 1)max t
 



   ,l
w

   – is the 

time of finishing execution of   l 1 p j     – software resource block by all n 

processes at j processor,  j 1, p , l 1,k . 

The total time of execution of n competitive distributed homogeneous 
processes if , , is defined as a sum of constituents of Gantt chart, 

with an allowance for maximum permissible overlap along time axis. i.e. 

s kp k 1

 

  
k k 1

as,1
dh l l l

l 1 l 1

T p,n,s kp, T min ,


 

       . 
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Here l  – a piece of possible overlap along time axis which is the difference 

between the beginning of execution of software resource block by the first 
process for the (l+1) group of blocks and the end of execution of software 

resource block, by the last process for the l–group of blocks, and "
l  is the 

difference between the beginning of execution of the first block by the i–process 
for (l+1) group of blocks and the end of execution of p block by  i–process for 
the l group of blocks, which are computed by the formula: 

 
j 1 p j 1

,l 1 j ,l ,l 1
l l w l w w

1 j p 1 j p
w 1 w j 1 w 1

min T t E min t t
 

 

   
   

         
   

     , 

  ,l ,l 1
l j

1 j p
1 j p

n 1 min max t ,max t 

 
 

j

 
   

 
  , l 1,k 1  . 

If ,  s kp r  k 1, 1 r p  , the minimum total time, in the modes 

considered, is defined by the formula: 
 

   
k k 1

as,1
dh l k 1 l l k k

l 1 l 1

T p,n,s kp r, T T min , min ,



 

               , 

where  
r

,k 1 ,k 1
k 1 j j

1 j r
j 1

T t (n 1)max t 
  



   

l
1 j
min
 



w

 – is the time of execution of (k+1) group 

of  r blocks by n processes, 
p j 1

,k ,k 1
w

r
w j 1 w 1

t t




  

 
   

 
  

(n 1)min m

  – is the difference 

between the beginning of execution of  j block by the first processor for the 
(k+1) group of  blocks and the moment of completion of execution of p block by 

i process for the k group of blocks, " ,l
k j

1 j p 1 j r
ax t ,max t 

   

,l 1
j

     
   – 

difference between the beginning of performance of the first block i process for 
(k+1) groups of blocks and the moment of completion of p block i process for k 
groups of blocks. 

If the interaction of processes, processors and blocks is exercised in the 
second synchronous operation when, for each block of the structured software 
resource the moment of completion of its execution for i process, coincides with 
the beginning of its execution for the (i+1) process at the same processor, 

i 1,n 1  , then the minimum total time  2
dhT p,n,s,  of execution of n 

homogeneous processes at p processors is defined by the following formulae: 
s s

2
dh j s j 1 j

j 1 j 2

T (p,n,s, ) t (n 1) t max{t t ,0} , s p,
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         2
dhT (p,n,s, )   

k k 1
' "

l l l
l 1 l 1

k k 1
' " ' "

l k 1 l l k k
l 1 l 1

T min{ , }, s kp, k 1,

T T min{ , } min{ , },s kp r, k 1, 1 r p.



 




 


   

        


 

 

 

   
 

The meanings ,  '
lT l , "

l , k 1T  , '
k , "

k  are computed according to the 

formulae: 
p p

,l
p

j 2

t
 

,l
l jT t ,lax{t 

,l
j 1 j

j 1

t ,0(n 1) m }
 

    
 

    is the total time of 

execution of the l p software resource blocks by all n processes at p processors, 

l 1,k ; '
l   and  "

l are the pieces of possible overlap of two consecutive charts 

along time axis: , , ' lE 1
j E ,l 1 l

j} l l
p
{T  j nt 

1 j
min
 

 " ,
l 1(n 1) min{t , t }   l 1 l

p

l 1,k 1  ; 
j j

,l
j

w

) t
 

l ,
j wE t l ( ,l ,l

w 1 w
w 1

m t ,0
2

n 1 ax{  }
 

    
 

    , j 1, p , l 1,k , is the 

time of completion of execution  pl 1 j     block by all n processes at the j 

processor; 
r r

j 2 

,
j

j 1

T t k ,k 1
k 1 j 1max{t 

1 ,k 1
r1) t  ,k 1

jt ,(n 0} 
    

 


"
k}

   

'
kmin{ ,

 is the time of 

execution  of (k+1) r blocks for all n processes;   is size of maximum 

overlap along time axis of k and (k 1)  charts: 
' k 1 ,k 1
k k j j

1 j r
min{T E nt E }, 

 
    k

j
" ,k
k 1(n 1)min{t , t }    . 1 ,k

p

3. Mode organization analysis of distributed competitive processes. The 
problem of comparative analysis of ratio for defining minimum total time of 
execution of great number of distributed competitive processes is of definite 
theoretical and practical interest. Let's analyze homogeneous system with an 
allowance for additional systems costs 0 . 

Let's consider a homogeneous system of distributed competitive processes 

with the time execution of blocks of a structured software process 1 2 st , t , ..., t   . 

Let 
s

р j
j 1

T


  t 

1 2 st , ..., t ,

 be the total time of execution of software resource by each 

process with an allowance for systems costs and a set of parameters 

p(t , T )     of this system will be characteristic. 
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Let 
s

1 2 n p d j j j
j 1

(t , t , ..., t , T ) T t , t t 0 j 1,s


      
  

           be a 

number of all legal characteristic processes. Let's highlight characteristic subset 
out of sets  : 

d 1 2 s p 1 2 l l 1 s(T ) {(t , t , ..., t , T ) t t ... t t ... t , l 1,s}                   . 

Then for this subset the following theorem is fair theorem. 

Theorem 1. Let d(T )   be a characteristic set of any homogeneous 

system with the parameters p, n, s 2  and systems costs 0 . Then in case of 

unlimited parallelism minimum total times ,  and of execution of a 

number of homogeneous distributed competitive processes in asynchronous and 
basic synchronous operations coincide. 

as
dhT 1

dhT 2
dhT

Proof. Let l
1 j s

t max t
 

 j
  . Then for both asynchronous and first synchronous 

operation with contiguous transition from one block to another for any 
characteristic legal set of homogeneous system including any characteristic set 

d(T )   when 2 s p  , there occur equalities: 
ас 1
dh dh d lT (p,n,s, ) T (p,n,s, ) T (n 1)t      , 

where
s

d j
j 1

T t


  , j jt t   , j 1,s . 

Let the interaction of processes, processors and blocks be exercised in the 
second synchronous operation with a contiguous transition along the processes. 
In this mode for any characteristic set out of   if 2 s p   the equality is 

performed: 
s s

2
dh j s j 1 j

j 1 j 2

T (p,n,s, ) t (n 1) t max{t t ,0}
 

 
     

 
     .  (1) 

Thus, for any characteristic set  dH T   the equality 

s

s j 1 j
j 2

t max{t t ,0}


  lt     is  performed, so the theorem is proved. 

Taking into account that l
1 j s

t max t
 

 j
  , for all the numbers j l  there's an 

equality 
l

j 1 j
j 2

max{t t ,0}


0   

j 1 j l st ,0} t t   

, and for  there's an equality j l

s

j l 1

max{t
 
     .  
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Therefore, 
s

s j 1 j s l
j 2

t max{t t ,0} t t t t


s l             which was to be proved 

(Q.E.D. quod eras demonstrandum ). 
Theorem 2. For any homogeneous distributed system  with the parameters 

p, n, s and systems costs 0 , a legal characteristic set of which is   pH T   

if , the ratio is: 2 s p 
2 as 1
dh dh dhT (p,n,s, ) T (p,n,s, ) T (p,n,s, )   

j 0

.  (2) 

 
Proof. The terms of theorem 2 equals to the inequality 

. The proof of the indicated above is carried 

out by blocks s,  , induction. 

s

s j 1 j
1 j s

j 2

t max{t t ,0} max t  


    

s 2
If , a number of all legal characteristic sets of homogeneous systems of   

competitive processes 

s 2

1 2(t , t )    will belong to class d(T )  . 

If , inequality validity (2) for s 3 p(T )   is easily defined by direct 

check–out. 
Let, then, inequality (2) be performed if s i , i.e. 

. Let's show that it is valid if 
i

i j 1 j
1 j i

j 2

t max{t t ,0} max t  


    
j 0 s i 1  . 

Indeed, if s i 1  we have: 
i 1

i 1 j 1 j j
1 j i 1

j 2

t max{t t ,0} max t


    


     

t

 

i

i 1 j 1 j i i 1 j
1 j i 1

j 2

t max{t t ,0} max{t t ,0} max     


           . 

Let's examine two cases. 

1) The maximum meaning jt , 1 j i 1   , equals i 1t 
 , then we have: 

   
i

i 1 j 1 j i i 1 i 1
j 2

t max t t ,0 max t t ,0 t  


        
   

   
i

j 1 j i i 1
j 2

max t t ,0 max t t ,0 0 


        . 

Here the second composed equally to zero, and the first composed is more 

than zero for otherwise p(T )   that contradicts a condition of the theorem 2. 

2) The meaning j
1 j i 1
max t
  

  , 1 j i  , then we have: 
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i

i 1 j 1 j i i 1 j
1 j i 1

j 2

t max{t t ,0} max{t t ,0} max t     


         



j 0

j

 

i

i 1 i i j 1 j j i i 1
1 j i 1

j 2

t t t max{t t ,0} max t max{t t ,0}    


               . 

Here  according to the induction 

hypothesis and because

i

i j 1 j
1 j i 1

j 2

t max{t t ,0} max t   


    

j
1 j i 1 1 j i
max t max t
    

 

i i 1max{t t ,0} 0   
it

. Let's show then, that 

. Indeed for i 1 it t  
it 1   equality to zero is obvious. 

If i it t  1
   we'll get i 1 i i i 1 i 1 i i i 1t t max{t t ,0} t t t t 0                  , and if 

it  i 1t 
   we'll have i 1 i i i 1 i 1 it t max{t t ,0} t t 0             , which was to be 

proved. (Q.E.D.) 

4. The efficiency of the system of homogeneous competitive processes in 
terms of unlimited parallelism. Let's introduce the following definition which 
singles out in the class of homogeneous system of competitive processes a 
specific subclass of, the so–called, even system. 

Definition 3. Let a homogeneous distributed system of competitive 

processes call even, if 1 2 st t t t       . 

Theorem 1 proves that for homogeneous systems of competitive processes 
the minimum total time, with an allowance for systems costs 0  for all the 
three basic modes indicated in point 1, if s p  formula evaluated: 

as,1,2
dh р maxT (p,n,s, ) T (n 1)t    ,   (3) 

where 
s

d j
j 1

T t


  , j jt t   , j 1,s , max j
1 j s

t max
 

 t  . 

In case of even homogeneous system of competitive processes, the 
minimum total time of their execution is defined by the equality: 

T(p,n,s, ) (n s 1)t    ,    (4) 

where st T s   , sT st . 

Definition 4. Let's a homogeneous system of distributed competitive 

processes name efficient if p, n 2 , nis fixed and the ratio 
s(s) nT T(p,n,s, ) 0      is performed, where  – is the time of execution 

of n processes in a contiguous mode, and . 

snT

j

s

j 1

T t

s 

If we have two efficient homogeneous systems of competitive processes, 
let's suppose that the first one is more efficient than the second, if the quantity 
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 s  of the first system isn't less than the second corresponding quantity. The 

following statement is legal for the introduced subset of homogeneous systems. 
Theorem 3. For any efficient homogeneous systems of competitive 

processes if  and s p 0  there exists a more efficient even homogeneous 

distributed system. 
Proof. Let's examine any efficient homogeneous distributed pipeline system. 

According to definition 4, the condition of its efficiency with an allowance for 
(3) is written down as the next inequality: 

s s
max(s p) (n 1)(T t ) (n s 1) 0          ,  (5) 

where  . 
s

s
j

j 1

T t


 , s
max j

1 j s
t max

 
 t

For any even homogeneous distributed system with an allowance for (4) we 
have, that  

s(s p) (n 1)(T t) (n s 1) 0          ,  where  .  (6) st T / s

To be convinced of the theorem validity 3 it's enough to prove the inequality  

     for introduced efficient systems. Substituting the left right parts of the 

recent inequality (5), (6) for  s p   and  s p   corresponding quantities 

and carrying out some simple transformations, we get unequal inequality 

. s s
maxT t (s 1)t  

Let's prove this inequality. Let's examine an even homogeneous distributed  

system, in which . Let , then a chain of relations  s
j ma

1 j s
t max t t

 
  x t

t

s
max lt 

l 1 s
s s s

max j j max
j 1 j l 1

T t t t (s 1)t (s 1)


  

        , 

is true, which was to be proved. 
The next statement establishes a sufficient condition of the efficiency of a 

homogeneous system in case of unlimited parallelism. 
Theorem 4. The homogeneous system of competitive processes with the 

parameters p, n, s,   satisfying the relations 3 s p  , s n 3  , 

 and ns 2(n s  1) 0 j1 j s
min t
 

   is efficient. 

Proof. According to (5) the condition of efficiency is equal to the inequality 
 

s s
maxT t n s 1

n 1

  



.    (7) 
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Therefore, to prove theorem 4 is enough to be convinced of inequality (7) 
validity. Direct checking  out shows that the consequence of relations 

 is a chain of inequalities s
j mi

1 j s
0 min t t

 
   n

s s s
max minT t (s 1)t

s 1
 

 
 

 ,   (8) 

because of the choice of   the inequality   is performed. s
mint /  1

From  ns 2 n s 1   results the inequality validity  

n s 1
s 1

n 1

 
 


.    (9) 

Verification shows that inequality (7) is the consequence of inequalities (8) 
and (9). Thus theorem 4 is proved. 

The criterion of the existence of efficient homogeneous system of 
distributed competitive processes under sufficient number of processes against 
the burden rate   is formulated and examined further. 

Theorem 5. For the existence of efficient structuring of a software resource 

under set–up parameters s3 s p, Т , 0     it's necessary and sufficient for the 

following conditions to be fulfilled: 

(1 n ), if n int egral,

max{ (1 [ n]), (2 [ n])}, if n non int egral,

   
   




 
 (10) 

where 
   

 

nn 1 T x 1
(x)

x n x 1

 


 
 , [x  is  the biggest integral, not bigger than x. ]

Proof. According to (6) the condition of efficiency of any homogeneous 
distributed system of competitive processes is equal to the inequality 

s(n 1)T (s 1)
.

s(n s 1)

 


 
    (11) 

Let's examine the function
   

 

sn 1 T x 1
(x)

x n x 1

 


 
 . 

It isn't difficult to check that it is at its maximum at the point x 1 n   
when x>0. Choosing as an efficient one structuring for s blocks, when 

s x 1 n    if n  is integral, or s x {1 [ n],2 [ n]}     if n  is non–

integral, we prove necessity. 

Sufficiency follows from (11), as (x)  is at its maximum when x 1 n   , 

if n  is integral or x {1 [ n],2   [ n ]} , n  is non integral. 
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5. Optimality of homogeneous systems of competitive processes 
Definition 5. An efficient equally distributed system is called optimal, if the 

quantity   is at its maximum. 

In 4 it's shown that an optimal homogeneous distributed system should be 
searched for among efficient homogeneous distributed systems. Moreover, 
according to theorem 3 an optimal homogeneous distributed system should be 
searched for among even homogeneous distributed systems. Then with an 

allowance for (6) we have:   ss (n 1)T (1 1/ s) (n s 1)        . 

Let's introduce the function of actual argument x: 

  s 1
x (n 1)T (1 ) (x s 1) , x

x
1         . 

Solving the problem of optimality of even structuring of software resource 
for s blocks for a sufficient number of processors, including all the three basic 
modes, results from the theorem. 

Theorem 6. So as an efficient structuring of software resource for s blocks, 

when , to be optimal, under given ,  , s p s 2 sT 0 , it's necessary and 

sufficient for it to be even and a number of blocks  is equal to one of the 

figures 

0s

    1

  


2
s sn 1 T n 1 T

,
    
   
      

 
, p , in which function  x  is at 

its maximum. Here  x means the biggest integral not more than x. 

Proof. Necessity. Let's examine the function: 

s 1
(x) (n 1)T 1 (x s 1) , x 1.

x
        

 
   

According to definition 5 a homogeneous distributed system will be optimal 

at that point x. where the function  x  is at its maximum. The function 

 x  is at its maximum at the point 
  sn 1 T

x





.  Actually, 

s
'

2

(n 1)T
(x) ,

x


   

s
"

3

2T (n 1)
(x) 0,

x


    as  n 2, x 0. 

Consequently the function  x  is at its maximum at the point, where its 

first derivative is transformed into naught  x 0,  i.e. 
  s

* n 1 T
x





. 

Integer–valued points, in which the function  x  is at its maximum, will 

be  or*
0s [x ] 1*

0s [x ]  . Consequently, it's possible to choose one of the 

 
202



figures 
   s sn 1 T n 1 T

,
    
   1 
       

, in which the function  x  is at its 

maximum, doesn't belong to  2, p , then we choose 0s p  as an optimal 

structuring by the number of blocks. 
Under negativeness of the second derivative, the function under study is 

convex. Consequently, a maximum point always exists, which means the 
existence of an efficient homogeneous distributed system of competitive 
processes in the case s . 

Sufficiency results from the convexity of the function  x  when s p  on 

the range  2, p . 

6. Conclusion. The received criteria of efficiency and optimality of software 
resources structuring can be used while designing system and applied software of 
multiprocessor and computer complex. The received formulas can also serve as a 
basis for solving problems of optimality of the number of processors under given 
computation and (or) directive terms of process realization. 
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