## АКТИВНОСТЬ ГИДРОЛИТИЧЕСКИХ ФЕРМЕНТОВ СПЕРМОПЛАЗМЫ ПРИ ОЦЕНКЕ ПОТЕНЦИАЛЬНОЙ МУЖСКОЙ ИНФЕРТИЛЬНОСТИ

## Д.О. Герловский, Н.М. Литвинко

Институт биоорганической химии НАН Беларуси, Минск

Актиальность. Мужское бесплодие является распространённой проблемой во всем мире. Для результативного лечения необходимо как можно раньше выявить заболевание репродуктивной системы и установить его этиологию. Для проведения ранней диагностики необходим поиск соответствующих молекул-маркеров, присутствие которых свидетельствовало бы о начале патологического процесса [1]. В качестве таких маркеров была изучена общая активность протеаз и фосфолипаз семенной жидкости в сопоставлении с общим количеством белка спермоплазмы. Как было нами ранее показано сопоставление уровня активности ФЛА<sub>2</sub> в семенной жидкости пациентов с диагнозом бесплодие и людей с нормальной репродуктивной функцией экспресс-методом гельдиффузии даёт возможность прогнозной оценки потенциальной мужской инфертильности [2]. Тем не менее, использованный метод гель-диффузии является полуколичественным, работает при сравнении опытного и контрольного образцов, и не даёт однозначного ответа на вопрос о конкретных значениях скоростей реакций гидролиза и активности ферментов [3].

**Целью** настоящей работы являлось изучение общей протеазной и  $\Phi \Pi A_2$  активности в сопоставлении с общим количеством белка спермоплазмы у здорового донора и больного бесплодием. А также изучение субстратной специфичности  $\Phi \Pi A_2$  спермоплазмы при количественном анализе.

Материалы и методы. В работе были использованы классические методы определения протеазной активности и общего количества белка с применением реактива Фолина. В случае изучения общей протеазной активности исследовали реакцию гидролиза белка под действием спермоплазмы течении 30 минут с использованием БСА (козеина) в качестве субстрата реакции. В качестве продукта реакции регистрировали количество образовавшегося тирозина. В случае изучения общей ФЛА<sub>2</sub> активности исследовали реакцию гидролиза фосфолипидов под действием спермоплазмы в течении 60 минут (для расчёта активности) и нескольких суток (для определения специфичности к субстрату) с использованием фосфатидилхолина (ФХ) и фосфатидилэтаноламина (ФЭА) в качестве субстрата реакции в составе смешанных мицелл фосфолипид:ТХ100 (1:3). В качестве продуктов реакции регистрировали количество образовавшегося лизолипида и исходного субстрата, разделённых методом ТСХ (Рисунок 1), с последующим анализом соответствующих пятен на количественное содержание фосфора методом Васьковского [4].

**Результаты и выводы.** Изучение общей протеазной активности при гидролизе белка под действием спермоплазмы течении 30 минут с использованием БСА (козеина) в качестве субстрата

реакции в вышеописанных условиях эксперимента показало значение скоростей реакции гидролиза на уровне 0,12 мкмоль/мл\*мин для больного с диагнозом бесплодие и 0,062 мкмоль/мл\*мин – для здорового донора, из чего можно сделать вывод об увеличении активности в два раза. Концентрация белка в условиях эксперимента *in vitro* для больного с диагнозом бесплодие и для здорового донора не отличалась и составила 0,88 мг/мл, что в пересчёте на исходный образец спермоплазмы составляло 8,8 мг/мл. Определённое значение концентрации белка несколько ниже литературных данных (70 мг/мл), что может объясняться временем хранения исследованных образцов, содержащих протеазную активность. Конечная общая протеазная активность спермоплазмы в пересчёте на мг белка составила 0,136 МЕ/мг в случае больного и 0,07 МЕ/мг в случае здорового доноров, что свидетельствует об увеличении активности ферментов при развитии заболевания.

Изучение общей  $\Phi ЛA_2$  активности при гидролизе фосфолипидов под действием спермоплазмы с использованием фосфатидилхолина ( $\Phi X$ ) и фосфатидилэтаноламина ( $\Phi A$ ) в качестве субстрата реакции в составе смешанных мицелл фосфолипид:TX100 (1:3), показало наличие пятен гидролизовавшегося субстрата, что может свидетельствовать о достаточной чувствительности метода с использованием TCX для анализа активности данного фермента (Pucyok1).

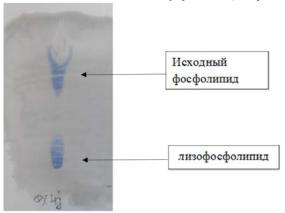



Рисунок 1. – Наличие пятна гидролизовавшегося субстрата (ФХ, ФЭА) после инкубации со спермоплазмой.

Значение скоростей реакции гидролиза под действие  $\Phi ЛA_2$  спермоплазмы в течении 60 минут в условиях эксперимента составило 0,0026 мкмоль/мин\*мл для здорового донора и 0,0195 мкмоль/мин\*мл — для больного, что с учётом количественного содержания белка спермоплазмы составляет 0,003 МЕ/мг для здорового донора и 0,022 МЕ/мг — для больного. Полученные данные свидетельствуют об увеличении активности  $\Phi ЛA_2$  при развитии патологии. Сравнение степени увеличения активности двух гидролаз говорит о большей чувствительности  $\Phi ЛA_2$  при использовании в качестве маркера заболевания.

Подбор субстрата для изучения общей активности  $\Phi ЛA_2$  в реакции гидролиза фосфолипидов под действием спермоплазмы в течении нескольких суток показал предпочтительное использование фосфатидилхолина ( $\Phi X$ ) в качестве субстрата реакции в сравнении с фосфатидилэтаноламином ( $\Phi A$ ) в составе смешанных мицелл фосфолипид:ТX100 (1:3) (рисунок 2).

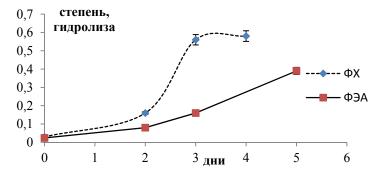



Рисунок 2. – Зависимость степени гидролиза фосфолипидов, выраженной в долях единицы, от времени реакции под действием ФЛА<sub>2</sub> спермоплазмы при использовании ФХ и ФЭА.

**Заключение.** Таким образом, в дополнении к ранее изученному методу гель-диффузии, полученные результаты свидетельствуют об увеличении активности изученных гидролаз при развитии патологического процесса, а также возможности использования метода TCX для количественного анализа активности  $\Phi ЛA_2$  спермоплазмы, с предпочтительным использование фосфатидилхолина  $(\Phi X)$  в качестве субстрата реакции.

## Список использованных источников

- 1. Камышников В.С. Клиническая лабораторная диагностика (методы и трактовка лабораторных исследований) / В. С. Камышников [и др.]; под общ. ред. В.С. Камышникова. М.:МЕВ прессинформ., 2015. 720 с.
- 2. Папино Д.С., Литвинко Н.М., Герловский Д.О. Использование метода определения лецитиназной активности при диффузии фермента в желточно-солевой агар для диагностики заболеваний репродуктивной системы/Материалы Международной научно-практической конференции «Биотехнологии микроорганизмов», г. Минск, 27-29 ноября 2019 г., С.379 381.
- 3. Литвинко Н. М. Набор реагентов «ФЛА2-ФОА» для определения активности панкреатической фосфолипазы  $A_2$  в крови человека методом фотометрического анализа / Литвинко Н. М., Камышников В. С., Воробей А. В., Вижинис Ю. И., Юрага Т. М., Скоростецкая Л. А. //Лабораторная диагностика. Восточная Европа. 2016, С. 121.
- 4. Vaskovsky, V.E. A universal reagent for phospholipid analysis / V.E. Vaskovsky, E.Y. Kostetsky, J.M. Vasendin // J. of Chromatography. 1975. Vol. 114, № 1. P. 129 –141.