УДК 611.612.06

ОСОБЕННОСТИ ФУНКЦИОНИРОВАНИЯ НЕЙТРОФИЛОВ У ПАЦИЕНТОВ С ЛЕГОЧНОЙ ГИПЕРТЕНЗИЕЙ

Г.Н. Семенкова¹, И.Э. Адзерихо², Т.Э. Владимирская², А.М. Серебро², Н.В. Амаэгбери¹, И.А. Новицкий¹, А.В. Шулганова¹

¹Белорусский государственный университет, Минск ²Белорусская медицинская академия последипломного образования, Минск, galina semenkova@vahoo.com

Введение. Легочная гипертензия ($\Pi\Gamma$) – клинический синдром, объединяющий состояния разнообразной этиологии и патогенеза, характеризующийся повышением легочного сосудистого со-

противления и давления в легочной артерии. Это приводит к развитию правожелудочковой недостаточности и преждевременной гибели пациентов [1]. Ключевую роль в процессе ремоделирования легочных сосудов играет дисфункция эндотелия. Она проявляется, прежде всего, наличием дисбаланса между эндогенными вазодилататорами и вазоконстрикторами, в пользу последних [2]. Патогенез ЛГ интенсивно изучается в экспериментальных моделях *in vivo*. Для ЛГ установлено, что важным фактором, способствующим развитию этой патологии, является воспаление. Доказательством данного утверждения является выявление взаимосвязи между воспалительным процессом и ремоделированием легочных сосудов. Кроме того, в процессе развития ЛГ наблюдается инфильтрация легочной ткани макрофагами, нейтрофилами, Т- и В-лимфоцитами, повышение активности макрофагов/моноцитов, а также увеличение про- и противовоспалительных цитокинов в крови и альвеолярной жидкости [3,4].

Одной из главных причин воспаления при ЛГ может быть возникновение оксидативного стресса, что обусловлено гиперпродукцией активных форм кислорода и хлора (АФКХ). Эти активные интермедиаты продуцируются в очаге воспаления фагоцитами в результате активации супероксидгенерирующей НАДФН-оксидазы и миелопероксидазы (МПО), катализирующей образование главного микробицидного агента и источника свободных радикалов — хлорноватистой кислоты [5,6]. НОСІ вызывает повреждение жизненно важных молекул, что приводит к нарушению клеточных функций и цитодеструкции [7]. Примечательно, что у пациентов с ЛГ в образцах легочной ткани выявлена высокая иммунореактивность в отношении МПО [8]. У этих же пациентов наблюдалось значительное увеличение уровня МПО и нейтрофильной эластазы в плазме крови, что может быть результатом усиления секреторной дегрануляции нейтрофилов.

Учитывая важную роль воспаления в развитии ЛГ, в этом исследовании проанализирована способность нейтрофилов циркулирующей крови пациентов генерировать активные формы кислорода и хлора, поскольку именно эти активные интермедиаты являются потенциальными источниками оксидативного стресса, а их уровень, как правило, возрастает при наличии в организме воспалительного процесса.

Материалы и методы. В работе использовали декстран, гистопак-1077, люминол, fMLP, Hepes («Sigma», США), компоненты для приготовления фосфатного буферного раствора (ФБР) и сбалансированного буферного солевого раствора Эрла (СБСРЭ) («Анализ X, Беларусь»).

Нейтрофилы выделяли из крови здоровых людей и пациентов с ЛГ в градиенте плотности гистопак-1077 по стандартной методике [9]. Примесь эритроцитов удаляли с помощью гипотонического лизиса, после чего восстанавливали осмотичность раствора добавлением 0,3 моль/л раствора NaCl. Суспензию клеток дважды отмывали в 0,15 моль/л растворе NaCl. Полученную фракцию клеток суспензировали в СБСРЭ (рН 7,2). Содержание нейтрофилов в клеточной суспензии составляло не менее 96 %.

Генерацию нейтрофилами АФКХ исследовали хемилюминесцентным (ХЛ) методом с применением компьютеризированного измерительного комплекса, включающего биохемилюминометр БХЛ-1 (Минск, Беларусь) и систему регистрации и обработки сигналов Unichrom (Беларусь). Измерения проводили в сбалансированном солевом буферном растворе RPMI (рH= 7,2-7,4) при T= 37° C. Суммарное количество АФКХ оценивали с помощью люминол-опосредованной ХЛ (Люм-ХЛ). Число нейтрофилов в 1 мл составляло $1\cdot10^{6}$ клеток. Генерацию нейтрофилами АФКХ наблюдали при активации клеток в процессе адгезии на стекло и стимуляции бактериопептидом fMLP. Интегральную интенсивность оценивали как площадь под кинетической кривой (при стимуляции адгезией – за 10 мин, при действии fMLP – за 5 минут).

Для статистической обработки результатов исследований использовали однофакторный дисперсионный анализ (one-way ANOVA). Отличия между контрольной и экспериментальными группами анализировали с помощью теста Даннета. Данные представлены как среднее значение трех и более независимых экспериментов \pm стандартное отклонение. Результаты считали достоверными при P<0,05.

Результаты и обсуждение. Нами проанализирована способность нейтрофилов крови генерировать АФКХ для 10 здоровых людей и 12 пациентов (9 женщин и 3 мужчин) с ЛАГ, находящихся на лечении в отделении кардиологии Минской областной больницы. Характеристика пациентов с ЛГ представлена в таблице.

Таблица – Сведения о пациентах

				Степень	
№	Пациент	Пол	Возраст	тяжести	Диагноз
				заболева-	диат поз
				кин	
1	B.	жен	28	I, II	Врожденный порок сердца, ЛГ
2	T.	жен	57	II	Врожденный порок сердца, ЛГ
3	Γ.	муж	49	III, IV	Идиопатическая легочная артериальная
					гипертензия
					(ИЛАГ)
4	P.	муж	75	I, II	Врожденный порок сердца, мерцательная
					аритмия, ЛГ
5	Cт.	жен	61	I, II	Врожденный порок сердца, ЛГ
6	Ca.	жен	61	I, II	Врожденный порок сердца, артериальная
					гипертензия, сахарный диабет, ожирение, ЛГ
7	C.	жен	55	II, III	ИЛАГ, врожденный порок сердца
8	Д.	жен	41	II, IV	ИЛАГ
9	Вд.	муж	28	II, III	ИЛАГ
10	Ce.	жен	61	II	Системный склероз, рак легкого, ЛГ
11	Ж.	жен	67	II	Врожденный порок сердца, артериальная
					гипертензия, ЛГ
12	К.	жен	63	I, II	Системный склероз, ЛГ

Из таблицы 1 видно, что у многих пациентов помимо ЛАГ наблюдались и другие, в том числе сердечно-сосудистые, заболевания. Результаты измерения интегральной интенсивности ХЛ, полученные при стимуляции нейтрофилов здоровых людей и пациентов с ЛГ к фагоцитозу адгезией и хемотаксическим пептидом fMLP, представлены на рисунках 1 - 3. Видно, что параметры ХЛ у различных пациентов были выше, ниже либо такими же, как в группе здоровых людей. Так, при анализе значений Люм-ХЛ нейтрофилов, стимулированных адгезией к стеклу (рисунок 1 и 3 А), было установлено, что, по сравнению с группой здоровых людей, у 4 пациентов вклад в генерацию АФКХ значительно выше (у них наблюдается ЛГ II, III и IV

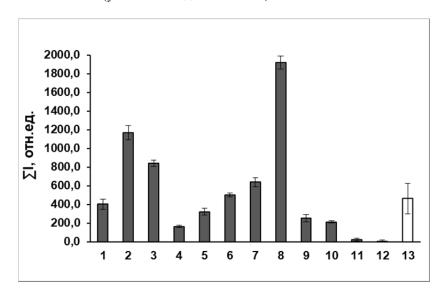


Рисунок 1. – Интегральная интенсивность Люм-ХЛ нейтрофилов, стимулированных адгезией к стеклу (пациенты (1-12), усредненное значение для здоровых людей (13))

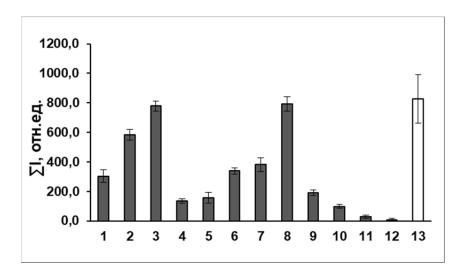


Рисунок 2. — Интегральная интенсивность Люм-ХЛ нейтрофилов, стимулированных fMLP в процессе адгезии к стеклу (пациенты (1-12), усредненное значение для здоровых людей (13))

степень тяжести). Сниженные по сравнению с контрольной группой (здоровые люди) значения интенсивности хемилюминесценции характерны для пациентов с I и II степенями тяжести ЛГ. В случае стимуляции нейтрофилов больных ЛГ хемотаксическим пептидом fMLP у 9 пациентов из 12 с I и II степенями тяжести зарегистрировано значительное снижение образования активных метаболитов кислорода и хлора по сравнению с контролем (рисунок 2 и 3 Б).

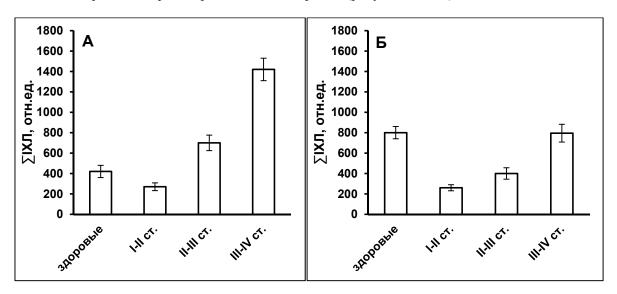


Рисунок 3. – Интегральная интенсивность Люм-ХЛ стимулированных адгезией (A) и fMLP (Б) нейтрофилов здоровых людей и пациентов в зависимости от степени тяжести ЛГ. I – первая, II – вторая, III – третья и IV – степень тяжести заболевания

Заключение. В результате анализа полученных данных установлено, что у большинства пациентов с ЛГ изменена способность стимулированных к фагоцитозу нейтрофилов крови генерировать АФКХ по сравнению с контрольной группой. Известно, что люминол, используемый для регистрации АФКХ, взаимодействует со всеми типами активных метаболитов кислорода и хлора, однако наиболее эффективно этот хемилюминесцентный индикатор реагирует с хлорноватистой кислотой [10]. Поскольку НОСІ образуется в галогенирующем цикле МПО, можно заключить, что наблюдаемое нами нарушение способности нейтрофилов генерировать АФКХ у пациентов с ЛГ обусловлено изменением продукции хлорноватистой кислоты, что связано с функционированием этого фермента. Примечательно, что генерация АФКХ клетками пациентов зависит от степени тяжести заболевания. Если для I и II степени тяжести мы зарегистрировали снижение выхода

АФКХ по сравнению с контролем, то с увеличением степени тяжести патологии (II и III, III и IV) наблюдается увеличение выхода АФКХ. Причем, в случае стимуляции нейтрофилов к фагоцитозу адгезией (рисунок 3 А), у пациентов с высокой степенью тяжести ЛГ генерация АФКХ значительно превышает контрольные значения, что свидетельствует о повышенной функциональной активности нейтрофилов за счет увеличения вклада МПО в этот процесс. Можно предположить, что нейтрофилы вовлечены в формирование оксидативного стресса в процессе развития ЛГ.

Список использованных источников

- 1. Rafikova, O. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development / O. Rafikova, I. Al Ghouleh, R. Rafikov // Antioxidants Redox Signal. 2019. Vol. 31(13). P. 933–953.
- 2. Galiè, N. Hoeper MM, Humbert M et al. Guidelines for the diagnosis and treatment of pulmonary hypertension / N. Galiè [et al.] // Eur Respir J. 2009. Vol. 34(6). P. 1219–1263.
- 3. Tang, C. Characteristics of inflammation process in monocrotaline-induced pulmonary arterial hypertension in rats / C. Tang [et al.] // Biomed Pharmacother. 2021. Vol. 133:111081.
- 4. Chami, H.El. Immune and inflammatory mechanisms in pulmonary arterial hypertension / H. El Chami., P.M. Hassoun // Prog Cardiovasc Dis. 2012. Vol. 55(2). P. 218–228.
- 5. Arnhold, J. The dual role of myeloperoxidase in immune response / J. Arnhold // Int J Mol Sci. 2020. Vol. 21(21). P. 1–28.
- 6. Kettle, A.J. Myeloperoxidase: A key regulator of neutrophil oxidant product / A.J. Kettle, C.C. Winterbourn // Redox Rep. 1997. Vol. 3(1). P. 3–15.
- 7. Hawkins, C.L. Hypochlorite-induced oxidation of amino acids, peptides and proteins / C.L. Hawkins, D.I. Pattison, M.J. Davies // Amino Acids. 2003. Vol. 25(3–4). P. 259–274.
- 8. Klinke, A. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase / A. Klinke [et al.] // JCI insight. 2018. Vol. 3(11).
- 9. Böyum, A. Isolation of lymphocytes, granulocytes and macrophages / A. Böyum // Scand. J. Immunol. -1976. Vol. 5. P. 9-15.
- 10. Roshchupkin D, Belakina NS, Murina MA. Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants directly responsible for luminol oxidation. Biophys. 2006. Vol. 51(1). P. 99–107.