
7-09

Журнал настоящего хозяина

НАШЕ ельское озяистве

Природная сила ЭКОГОЛЛ

	земледелие и растениеводство Семеноводство будет определять темпы дальнейшего развития растениеводства 2 • С.А. Банадысев		Доильное оборудование с точной настройкой на высокое качество
	Озимому клину — оптимальные предшественники	4.	животноводство Выводим пастбищные травы из «депрессии» (Часть 2. Начало в №6)
	Солома на удобрение: рассчитываем баланс12 в В.Н. Босак		Оптимизация аминокислотного состава комбикормов
	защита растений Протравливание – необходимый прием при подготовке семян озимых зерновых культур	PARK!	Люпин как дополнительный источник белка в бройлерном птицеводстве60 ■ А.К. Ромашко
экч сил	Экосил — это выгодно и человеку, и растению22 • И.А. Шаганов		календарь выставок Международные агропромышленные выставки и конференции54 в сентябрь — октябрь 2009 года
апистер	АЛИСТЕР — новый уровень защиты озимых зерновых культур от сорняков26		наш сад «Антей-сад»: здравый смысл во главе успеха
	механизация Отечественная техника для обработки почвы и посева озимых культур31 Н.Д. Лепёшкин, А.А. Точицкий, А.В. Китун		Земляника садовая: новые сорта, технология закладки и выращивания
IMB3	Сделано в Беларуси. Современная техника для послеуборочной доработки картофеля39 • А.Н. Ярохович, А.А. Лиходиевский		Бактериальный ожог плодовых культур
			BURLINGED CANK CACHYOTHI ENTRYCH
	H.F.	4	IB. NS

Солома на удобрение: рассчитываем баль

В.Н. Босак, доктор сельскохозяйственных наук,
 Полесский государственный университет

Дополнительным резервом органических удобрений является солома, применение которой повышает плодородие пахотных земель и поддерживает бездефицитный баланс гумуса и питательных элементов.

Традиционными способами подготовки соломы к использованию на удобрение являются получение подстилочного навоза и производство компостов, где солома служит одним из компонентов и хорошим влагопоглощающим материалом для бесподстилочного навоза и помета.

Эффективным способом использования соломы является ее непосредственное применение на удобрение без отчуждения из агроценоза. Для этого используют солому рапса и других крестоцветных культур (горчицы, сурепицы, редьки масличной), солому гречихи, кукурузы, люпина, кормовых бобов, сои, которые в чистом виде практически не используются на корм и подстилку. Для удобрения рекомендуется также солома озимой и яровой пшеницы, озимого и ярового тритикале, озимой ржи, а также излишки соломы других яровых (ячменя, проса, овса) и зернобобовых культур (гороха, вики, пелюшки).

Ценность соломы как удобрения обусловлена высоким содержанием в ней органического вещества. Из применяемых в настоящее время удобрений солома зерновых культур содержит наибольшее количество органического вещества. По содержанию углерода солома в 3,5-4,0 раза превосходит подстилочный навоз, что является чрезвычайно важным в регулировании баланса органического вещества почвы.

Химический состав соломы зерновых и крестоцветных культур характеризуется высоким содержанием безазотистых веществ и низким уровнем белка. Это создает довольно широкое отношение углерода к азоту (С: N =

80-100: 1 у зерновых культур; С: N = 60-70: 1 у крестоцветных культур). Оптимальным соотношением углерода к азоту в органических субстратах для активного функционирования почвенной микрофлоры считается 20-30: 1. В этом случае не происходит иммобилизации подвижных соединений почвенного азота в протоплазме микроорганизмов, излишней минерализации органических соединений азота, сокращаются потери азота в результате вымывания или улетучивания в процессе денитрификации. Данное соотношение углерода к азоту отмечается в соломе зернобобовых культур.

Величину соотношения углерода к азоту в соломе можно регулировать добавлением компенсирующей дозы азота, создавая тем самым оптимальные условия для ее трансформации и жизнедеятельности сапрофитных микрооганизмов. На удобрение без дополнительного внесения азота может применяться лишь солома бобовых культур, содержащая много белковых соединений.

Недостаток азота в соломе необходимо компенсировать до соотношения С: N = 25: 1. В зависимости от конкретных хозяйственно-климатических условий (типа и гранулометрического состава почвы, степени ее окультуренности, предшественника, дозы и вида соломы и т.д.) дозы вносимого азота могут колебаться от 5 до 15 кг д. в. на 1 т соломы в виде минеральных азотных удобрений или жидкого навоза (таблица 1).

Таблица 1. Дозы азота при запашке соломы разных культур

Солома культур	Доза азота, кг д. в. / т соломы		
озимые и яровые зерновые	10		
гречиха, кукуруза, рапс и другие крестоцветные	6-8		
смеси зерновых и зернобобовых	5		
зернобобовые: люпин, соя, горох, пелюшка, кормовые бобы, фасоль	_		

На высокоокультуренных почвах с высоким содержанием гумуса дозу минерального азота при запашке соломы можно уменьшать на 20-40%.

Компенсирующую добавку азота для разных видов соломы можно рассчитать по следующей формуле:

$$D_{N} = (\frac{K \times N}{25} - N) \times 10 \times C,$$

где $\mathbf{D_N}$ — доза азотных удобрений, кг д. в. на 1 га; \mathbf{K} — соотношение C:N в соломе (пшеница — 80-90; рожь — 100-110; ячмень — 70-80; овес — 80-90; кукуруза — 60-80; рапс — 60-70; зернобобовые культуры — 20-25); \mathbf{N} — содержание азота в соломе, %; $\mathbf{25}$ — необходимое соотношение C:N; \mathbf{C} — количество запахиваемой соломы, т/га.

Пример. В поле запахивается солома озимой пшеницы в количестве 4 т/га с содержанием азота 0.45% при соотношении C:N = 85. Компенсирующая добавка азота составит ($(85\times0.45/25)-0.45)\times10\times4=43.2$ кг/га, или 10.8 кг азота на 1 т соломы.

Интенсивность разложения растительных остатков можно регулировать также дополнительным внесением фосфорных удобрений. При соотношении С : P=200:1 биологического связывания почвенного фосфора не происходит. При среднем содержании фосфора в соломе 0,11%, а углерода 40%, это соотношение составит примерно 350-400:1. Поэтому для усиления интенсивности разложения соломы целесообразно добавлять 2-3 кг P_2O_5 на 1 т соломы. Точную дозу фосфора можно также рассчитать по формуле:

$$D_{P} = (\frac{K \times P}{200} - P) \times 10 \times C,$$

где $\mathbf{D_p}$ – доза фосфорных удобрений, кг д.в. на 1 га; \mathbf{K} – соотношение C:P в соломе; \mathbf{N} – содержание фосфора в соломе, %; $\mathbf{200}$ – необходимое соотношение C:P; \mathbf{C} – количество запахиваемой соломы, т/га.

В таблице 2 приведен средний состав соломы различных групп культур при влажности 16%, установленный в результате обобщения опытных и производственных исследований. Наряду с макроэлементами, в 1 т соломы в среднем содержится 6 г бора, 3 г меди, 29 г марганца, 0,4 г молибдена, 40 г цинка, 0,1 г кобальта.

В первую очередь, измельченную солому на удобрение используют в отдаленных от животноводческих ферм полях севооборотов и в хозяйствах с бесподстилочным содержанием животных. Измельчение соломы нужно проводить во время уборки зерновых, крупяных, крестоцветных и зернобобовых культур навесными приставками к комбайнам. Сразу же после измельчения соломы дополнительно следует внести 20-30 т/га жидкого навоза или минеральные азотные удобрения из расчета 10 кг азота на 1 тонну соломы, заделать полученную массу дисковыми боронами и запахать. По агрономической эффективности такое использование соломы на удобрение практически не уступает применению эквивалентных доз традиционных органических удобрений, а по экономической эффективности в 2-3 раза их превосходит. Средняя цена на приготовление, доработку и внесение подстилочного навоза при радиусе перевозок до 5 км составляет 3,70-4,74 \$/т, соломы (без учета дополнительного внесения азота) — 0,79 \$/т.

Для ускорения минерализации соломы после уборки основной культуры, измельчения соломы и минимальной обработки почвы возможен также посев пожнивных культур, которые затем используются в качестве зеленого удобрения. Сев пожнивных культур следует проводить в срок до 15 августа. После зерновых культур высевают крестоцветные или бобовые сидераты, после рапса — бобовые сидераты, после рапса — бобовые сидераты, после зернобобовых культур — крестоцветные сидераты. Зеленое удобрение в зависимости от типа использования запахивается осенью до наступления заморозков.

Общее количество соломы определяется по валовому сбору товарной продукции, умноженному на соответствующий коэффициент. Соотношение «основная продукция: побочная продукция» зависит от видового и сортового состава культур, урожайности, почвенных и погодных особенностей, условий питания и т.д. и может сильно колебаться.

По результатам обобщения полевых опытов и анализа производственных результатов приняты следующие коэффициенты пересчета зерна и семян в солому: озимые зерновые и зернобобовые культуры, кукуруза, просо — 1,2; яровые зерновые культуры и гречиха — 1,0; рапс и другие крестоцветные культуры — 3,0.

Для учета внесения соломы в качестве органического удобрения (форма 9-сх) используют следующие коэффициенты перевода в условный навоз (с учетом дополнительного внесения азота): солома зерновых, крупяных и крестоцветных культур — 3,5; солома зернобобовых культур и кукурузы — 3,8. Дополнительный учет жидких органических удобрений, которые заделывались совместно с соломой, не проводится. Коэффициенты перевода в условный навоз учитывают содержание органического вещества, количество и доступность основных элементов питания, соотношение между углеродом и азотом, что определяет процессы гумификации и питания растений, действие и последействие соломы в севообороте.

Количество соломы, которую можно использовать для непосредственного применения на удобрение, определяется по результатам баланса, который необходимо проводить в каждом конкретном хозяйстве.

Таблица 2. Средний состав соломы сельскохозяйственных культур

	Содержание, кг/т								
Культуры	органическое вещество	N общ.	P ₂ O ₅	K ₂ 0	CaO	MgO	SO ₄		
Зерновые	800	4,0	1,5	10,0	2,0	1,0	1,5		
Зернобобовые	780	10,0	2,0	11,0	9,0	2,0	5,0		
Крестоцветные	780	5,0	1,5	9,0	8,0	2,0	4,0		
Крупяные	800	7,0	3,0	12,5	5,0	2,0	1,0		
Кукуруза	850	4,5	2,0	12,0	3,0	2,0	2,0		

Рассчитывается баланс соломы по следующим статьям:

Общий выход соломы (С,):

$$C_1 = B_1 K_1 + B_2 K_2 + B_3 K_3 + ... B_n K_n$$

где ${\bf B}-$ валовой сбор зерна или семян разных культур, ${\bf K}-$ коэффициенты пересчета в солому.

Потребность в соломе на корм животным (С,):

$$C_2 = Pc \times \Pi \times 220 \times 1,25 \times 0,001$$

где Pc — суточный рацион, кг; Π — поголовье скота, условные головы (перевод в условные головы проводят по коэффициентам: коровы и быки — 1,0; прочий крупный рогатый скот — 0,6; свиньи — 0,3; овцы и козы — 0,1; лошади — 1,0; птица — 0,02); **220** — средний стойловый период, дней; **1,25** — коэффициент страхфонда; **0,001** — коэффициент пересчета в тонны.

Солома на подстилку (С.):

$$C_3 = Hn \times \Pi \times 270 \times 0,001$$

где **H** — норма подстилки в сутки, кг; **П** — поголовье скота, условные головы; **270** — средняя продолжительность подстилочного периода, дней; **0,001** — коэффициент пересчета в тонны.

Солома для приготовления компостов при соотношении полужидкого навоза к торфу и соломе 1: 0,3 : 0,05 (C_4):

$$C_4 = Hc \times T$$

где \mathbf{Hc} – норма соломы на 1 т полужидкого навоза, 0,05 т; \mathbf{T} – количество полужидкого навоза, т.

Солома для укрытия буртов (картофель, кормовые корнеплоды) (C_s):

$$C_s = 5\kappa \times 0.1$$

где **Бк** — количество картофеля и корнеплодов для закладки в бурты, т; **0,1** — коэффициент, отражающий количество соломы от веса картофеля и корнеплодов в буртах (10%);

Солома для хозяйственных нужд населения (C_s):

$$C_6 = X \times 1,5$$

где **X** — количество работников, которым требуется солома для хозяйственных нужд; **1,5** норма соломы на 1 работника, т.

Солома на удобрение (непосредственная заделка в почву) (С.):

$$C_8 = C_1 - (C_2 + C_3 + C_4 + C_5 + C_6 + C_7)$$

где ${\bf C}_7$ — солома для прочих нужд (использование в энергетических целях, в промышленности, для народных промыслов и т.д.).

Пневматические транспортеры зерна

KONGSKILDE

помогут вам с транспортировкой зерна на складах, загрузкой в транспортные средства, сушилки и силоса!

С ПРИВОДОМ ОТ ЭЛЕКТРОДВИГАТЕЛЯ

(производительностью 15 - 33 тонн/час)

С ПРИВОДОМ ОТ ВОМ ТРАКТОРА

(производительностью 15 - 33 тонн/час)

С ПРИВОДОМ ОТ ВОМ ТРАКТОРА С ТРАНСПОРТНОЙ ТЕЛЕЖКОЙ

(производительностью 20 -120 тонн/час)

Легкоразборные соединения позволяют без особых усилий устанавливать как постоянные так и временные системы трубопроводов

(метры)	10	20	30	40	50	60	80	100
SUC200	15,7	13,9	12,5	11,2	10,1	9,1	7,5	6.2
SUC300	20,4	18,2	16,4	14,9	13,6	12,5	10,6	9,1
SUC500	33,2	30,1	27,4	25,1	23,1	21,4	18,6	16,3
SUC700	44,2	40,3	36,9	34,0	31,5	29,3	25,6	22,7
SUC1000*	64,0	58,4	53,5	49,3	45,7	42,5	37,1	32.9
SupraVac 2000	120	106	92	81	71	64	55	50

Техника вашего успеха

Иностранное Предприятие "ОЛ-ПИ" 220090, Республика Беларусь, г. Минск, ул. Кольцова, 19-176. Тел.: (017) 266-45-45, (029) 641-49-45. Тел./факс: (017) 266-49-45.