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A. Boccuto, B. Riečan and A. R. Sambucini

Some properties of an improper GHk integral in

Riesz spaces 21-51

Abstract: We investigate the GHk integral for functions defined

on (possibly) unbounded subintervals of the extended real line

and with values in Riesz spaces. Some convergence theorems are

proved, together with a version of the Fundamental Formula of

Calculus.

A. A. Shaikh, Y. Matsuyama and Sanjib Kumar Jana

On a type of general relativistic spacetime with

W2-curvature tensor 53-62

Abstract: Most of the matter in the universe can, in some form

or other, be treated as a fluid and in several phenomena such as su-

pernova explosions, jets in extragalactic radio sources, accretions

onto neutron stars and black holes, high-energy particle beams,

high-energy nuclear collisions etc. undergoes the relativistic mo-

tion. In the general relativity the matter content of the spacetime

is described by the energy-momentum tensor which is determined

from physical considerations dealing with the distribution of the

matter and energy. Since the matter content of the universe is as-

sumed to behave like a perfect fluid in the standard cosmological

model, the physical motivation for studying Lorentzian manifolds

is the assumption that a gravitational field may be effectively mod-

elled by some Lorentzian metric defined on a suitable four dimen-

sional manifold which is called the general relativistic spacetime.

The object of the present paper is to study a type of a general

relativistic spacetime with vanishing and as well as the divergence

free W2-curvature tensor.



3

Eduard V. Musafirov

Reflecting function and periodic solutions of

differential system with small parameter 63-76

Abstract: The aim of this paper is to combine the method of re-

flective function and the perturbation method. The set of a linear

differential systems, the reflecting matrix for which is represented

by a product of three exponential matrixes is allocated. It has

allowed to obtain the sufficient conditions of existence of a family

of periodic solutions close to a given solution of multidimensional

nonlinear differential systems. Obtained results are illustrated by

examples.

Zhengxin Zhou

The qualitative behaviour of nonlinear defferential

systems 77-86

Abstract: In this paper, we give some criteria for the nonlin-

ear differential systems to be simple systems and find out their

reflective functions. The results are applied to the discussion of

the behavior of solutions of these nonlinear differential systems.

In particular, we discuss the qualitative behavior of solutions of

Riccati equation.

Xiaolong Qin, Meijuan Shang and Yongfu Su

(A, η)-resolvent operator technique for generalized

relaxed cocoercive variational inclusions 87-97

Abstract: Based on (A, η)-monotonicity, a new class of non-

linear variational inclusion problems is presented. Since (A, η)-

monotonicity generalizes A-monotonicity and H-monotonicity and

in turn, generalizes maximal monotonicity, results thus obtained

are general in nature and encompass a broad range of previous

results.



4

Ian Tweddle

A class of topologies on the space of bounded

sequences and associated spaces of continuous

functions 99-114

Abstract: We use a structure from set theory to define a lo-

cally convex topology on `∞ which is coarser than the usual norm

topology and gives rise to a smaller dual space. The two topologies

have the same boundedness, compactness and weak compactness

characteristics; under the new topology `∞ is complete but lacks

most weak barrelledness properties. We also identify our space as a

space of continuous functions on a certain pseudocompact, locally

compact space and show that its topology is a Mackey topology.

P. N. Natarajan and S. Sakthivel

Multiplication of double series and convolution of

double infinite matrices in non-Archimedean

fields 115-123

Abstract: In the present paper, K denotes a complete, non-

trivially valued, non-archimedean field. Entries of sequences, series

and infinite matrices are in K. The purpose of the present paper is

to extend Theorem 1 of [2] for double series, introduce the concept

of convolution for double infinite matrices and to prove some basic

results related to that concept in non-archimedean fields.

Bruno Scardua

On the classification of Cn-actions and Stein

manifolds 125-148

Abstract: In this paper, we study the classification of Stein

manifolds equipped with codimension one (holomorphic) actions

of Cn. We regard the case of algebraic foliations on Cn+1 and

prove a linearization result. The other main result of this paper



5

states that a Stein manifold M of dimension n + 1 and equipped

with a holomorphic action of the complex additive group Cn such

that the corresponding foliation has a suitable dicritical singularity

is biholomorphic to Cn+1. Indeed, there is a partial linearization

for the action on M .

Biljana Krsteska and Erdal Ekici

Fuzzy contra strong precontinuity 149-161

Abstract: The concept of fuzzy contra strongly precontinuous

mapping are introduced and studied. Properties and relationship

of fuzzy contra strongly precontinuous mapping are established.

Also, some applications to fuzzy compact spaces are given.

Jionghui Cai, Shaolong Xie and Wen Qiu

The solitary wave solutions of a generalized

improved Boussinesq four-order equation 163-175

Abstract: The qualitative theory of ordinary differential equa-

tions and numerical simulation methods are employed to investi-

gate the solitary waves of a nonlinear four-ordered equation. Un-

der the condition r > 0, the wave equation can be changed to a

planar system, the properties of the singular points are studied,

and the bifurcation phase portraits are drew. The parameter con-

ditions that the existence of solitary waves to be found, and their

solutions are obtained. The planar graphs of the travelling wave

equation are simulated using the mathematical software Maple.

The numerical simulation and qualitative results are identical.

Songxio Li and Stevo Stević
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1. Introduction

As we know, most of differential systems cannot be integrated in
quadratures. Even so, some differential systems can be investigated on the
qualitative level using the reflecting function introduced in [4].

In the present paper with the help of reflecting function and the
small parameter method we research qualitative behaviour of solutions of
multidimensional differential systems (see also [5]).

Reflecting Function. General Case

Consider the system

ẋ = X(t, x), t ∈ R, x ∈ Rn, (1)

with a continuously differentiable right-hand side and with a general solu-
tion ϕ(t; t0, x0).

For each such system, the reflecting function (RF) is defined (see [4,
5]) as F (t, x) := ϕ(−t; t, x).

If system (1) is 2ω-periodic with respect to t, and F is its RF, then
F (−ω, x) = ϕ(ω;−ω, x) is the Poincaré mapping of this system over the
period [−ω, ω].

A function F (t, x) is a reflecting function of system (1) if and only if
it is a solution of the system of partial differential equations (called a basic
relation, BR)

∂F (t, x)
∂t

+
∂F (t, x)

∂x
X(t, x) + X(−t, F (t, x)) = 0

. with the initial condition F (0, x) ≡ x.

Each continuously differentiable function F that satisfies the condi-
tion

F (−t, F (t, x)) ≡ F (0, x) ≡ x,

is a RF of the whole class of systems of the form (see [6])

ẋ = −1
2

∂F

∂x

(
−t, F (t, x)

) (
∂F (t, x)

∂t
− 2S(t, x)

)
− S

(
−t, F (t, x)

)
, (2)

where S is an arbitrary vector function such that solutions of the system
(2) are uniquely determined by their initial conditions.



REFLECTING FUNCTION AND PERIODIC SOLUTIONS OF DIFFERENTIAL... 3

Therefore, all systems of the form (1) are split into equivalence classes
of the form (2) so that each class is specified by a certain reflecting function
referred to as the RF of the class.

For all systems of one class, the shift operator [3, pp. 11-13] on the
interval [−ω, ω] is the same. Therefore, all equivalent 2ω-periodic systems
have a common mapping over the period, and the behaviors of the periodic
solutions of these systems are the same.

Linear Case. Reflecting Matrix

Let system (1) be linear, i.e.

ẋ = P (t)x, t ∈ R, x ∈ Rn, (3)

and Φ(t) is its fundamental matrix of solutions.

Then general solution of system (3) is ϕ(t; t0, x0) ≡ Φ(t)Φ−1(t0)x0.
Therefore RF of system (3) is linear and F (t, x) ≡ F (t)x, where F (t) :=
Φ(−t)Φ−1(t). This matrix F (t) is referred to as a reflecting matrix (RM)
of system (3).

RM of any system satisfies the relation F (−t)F (t) ≡ F (0) = E,
where E is the n× n unit matrix.

Differentiable matrix F (t) is a RM of system (3) if and only if it is a
solution of the system (basic relation)

Ḟ (t) + F (t)P (t) + P (−t)F (t) = 0.

with the initial condition F (0) = E.

Any linear system with reflecting function F (t) can be reduced in the
form

ẋ =
(
−1

2
F (−t)Ḟ (t) + F (−t)R(t)−R(−t)F (t)

)
x,

where R(t) is an arbitrary continuous real n× n matrix.

If matrix P (t) is 2ω-periodic, and F (t) is RM of system (3), then so-
lutions µi, i = 1, n of the equation det (F (−ω)− µE) = 0 are multiplicators
of system (3).

See articles [5, 7-17], in which RF was also used for investigations of
qualitative behaviour of solutions of differential systems.
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2. Linear Systems with given Structure of the Reflecting Matrix

Consider the linear differential system

ẋ = P (t)x, t ∈ R, x ∈ Rn, (4)

where P (t) is a twice continuously differentiable n×n matrix. In some cases
(as it takes place for a periodic systems) the fundamental matrix X(t) of
the system (4) can be represented in the form

X(t) ≡ Φ(t)e−
B
2

t,

where Φ(t) is a continuous periodic n × n matrix; B is a constant n × n

matrix. RM of such systems is

F (t) ≡ X(−t)X−1(t) ≡ Φ(−t)eBtΦ−1(t).

With this in mind, we suppose what RM of system (4) is given by

F (t) ≡ eAteBteAt,

where A and B are constant n× n matrices.

LEMMA 2.1. Let RM of the system (4) be F (t) ≡ eAteBteAt, where
A and B are constant n× n matrixes. Then B = −2 (A + P (0)) and

2
(
P 2(0)A− 2P (0)AP (0) + AP 2(0)

)
−

(
A2P (0)− 2AP (0)A + P (0)A2

)
+2

(
Ṗ (0)P (0)− P (0)Ṗ (0)

)
+ P̈ (0) = 0. (5)

PROOF. Writing out BR for the considered RM, we obtain the iden-
tity

F (t) (A + P (t)) + (A + P (−t))F (t) + eAtBeBteAt ≡ 0.

By setting t = 0, we obtain matrix B. Twice differentiating obtained iden-
tity and putting t = 0, we get (5).

THEOREM 2.1. Let

P (t) ≡ e−Ate(A+P (0))tS(t)e−(A+P (0))teAt + e−AtP (0)eAt, (6)

where S(t) is an arbitrary odd continuous n×n matrix, A is constant n×n

matrix. Then RM of the system (4) is F (t) ≡ eAte−2(A+P (0))teAt.

And backwards. Let RM of the system (4) be F (t) ≡ eAte−2(A+P (0))teAt,
where A is constant n × n matrix. Then exist odd n × n matrix S(t) for
which matrix P (t) of the system (4) has the form (6).
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PROOF. Let matrix of the system (4) has the form (6). By checkout
of the BR it is proved, that matrix F (t) ≡ eAte−2(A+P (0))teAt is RM of the
system (4).

Backwards. Let matrix F (t) ≡ eAte−2(A+P (0))teAt be RM of the sys-
tem (4). Then from BR we obtain the identity

F (t) (A + P (t))− eAte−2(A+P (0))t (A + P (0)) eAt ≡

− (A + P (−t))F (t) + eAt (A + P (0)) e−2(A+P (0))teAt,

i.e.

F (t) (A + P (t))− F (t)A− eAte−2(A+P (0))tP (0)eAt ≡

− (A + P (−t))F (t) + AF (t) + eAtP (0)e−2(A+P (0))teAt.

Then we have

F (t)P (t)−eAte−2(A+P (0))tP (0)eAt ≡ −P (−t)F (t)+eAtP (0)e−2(A+P (0))teAt.

Premultiplying and postmultiplying the last identity by e−At, we obtain

e−2(A+P (0))teAtP (t)e−At − e−2(A+P (0))tP (0) ≡

− e−AtP (−t)eAte−2(A+P (0))t + P (0)e−2(A+P (0))t.

Premultiplying and postmultiplying the above obtained identity by eA+P (0),
we have

e−(A+P (0))teAtP (t)e−Ate(A+P (0))t − e−(A+P (0))tP (0)e(A+P (0))t ≡

− e(A+P (0))te−AtP (−t)eAte−(A+P (0))t + e(A+P (0))tP (0)e−(A+P (0))t.

Hence the matrix

S(t) :≡ e−(A+P (0))teAtP (t)e−Ate(A+P (0))t − e−(A+P (0))tP (0)e(A+P (0))t

is odd matrix. From the last identity one can express the matrix P (t) in
the form (6).

THEOREM 2.2. Let matrix P (t) of the system (4) has the form (6),
then

1) the mapping of the 2ω–periodic system (4) over the period [−ω, ω]
is

F (−ω, x) = e−Aωe2(A+P (0))ωe−Aωx;
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2) solution x(t) of the system (4) with initial condition x(−ω) = x0 is
2ω-periodic solution if and only if F (−ω, x0) = x0;

3) for any solution x(t) of the system(4) the vector-function

Y (t) ≡ e−(A+P (0))teAtx(t)

is even with respect to t.

PROOF. It follows from the Theorem 2.1 that matrix

F (t) ≡ eAte−2(A+P (0))teAt

is RM of the system (4). Therefore, the assertions 1) and 2) of the theorem
follow from [4, p. 11].

Since the matrix F (t) is RM of the system (4), so for any solution
x(t) of the system (4) the identity

x(−t) ≡ eAte−2(A+P (0))teAtx(t)

is true. Premultiplying the last identity by e(A+P (0))te−At, we obtain

e(A+P (0))te−Atx(−t) ≡ e−(A+P (0))teAtx(t).

Hence the function

Y (t) :≡ e−(A+P (0))teAtx(t)

is even function.

The following assertion is a consequence of the Theorem 2.1 for S(t) ≡
γ(t)E.

LEMMA 2.2. Let matrix of the system (4) be

P (t) ≡ e−AtP (0)eAt + γ(t)E, (7)

where A is a constant n × n matrix, and γ(t) is a continuous scalar odd
function. Then RM of the system (4) is F (t) ≡ eAte−2(A+P (0))teAt.

REMARK 2.1. If matrix of the system (4) has the form

P (t) ≡ e−AtP (0)eAt, (8)

then Lemma 2.2 is valid.
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In some case we can think that matrix of the system (4) is an ap-
proximation to Fourier series. With this in mind we consider the system
(4) with matrix

P (t) ≡ A1 + B1 cos mt + C1 sinmt + B2 cos rt + C2 sin rt, (9)

where A1, B1, B2, C1, C2 are constant n× n matrixes, and m, r ∈ R.

THEOREM 2.3. Let matrix of the system (4) has the form (9) and
m 6= 0. Then matrix of the system (4) has the form (8) if and only if

A1A = AA1,

B1A−AB1 = mC1,

AC1 − C1A = mB1,

B2A−AB2 = rC2,

AC2 − C2A = rB2.

(10)

PROOF. Necessity. Let matrix (9) of the system (4) has the form
(8). By differentiating the identity (8), we obtain

Ṗ (t) ≡ e−At (P (0)A−AP (0)) eAt.

Using identities (8), we have Ṗ (t) ≡ P (t)A−AP (t). Applying k − 1 times
differentiation to latter identity, we obtain

dkP (t)
dtk

≡ dk−1P (t)
dtk−1

A−A
dk−1P (t)

dtk−1
, ∀k ∈ N.

We make replacement of the variable τ = mt, then for any k ∈ N we have

dkP
(

τ
m

)
d

(
τ
m

)k
≡

dk−1P
(

τ
m

)
d

(
τ
m

)k−1
A−A

dk−1P
(

τ
m

)
d

(
τ
m

)k−1
,

i.e.

m
dkP

(
τ
m

)
dτk

≡
dk−1P

(
τ
m

)
dτk−1

A−A
dk−1P

(
τ
m

)
dτk−1

.

From last identities by setting τ = 0, we obtain equalities

(A1 + B1 + B2) A−A (A1 + B1 + B2) = m
(
C1 +

r

m
C2

)
, (11a)(

C1 +
r

m
C2

)
A−A

(
C1 +

r

m
C2

)
= −m

(
B1 +

r2

m2
B2

)
, (11b)

−
(

B1 +
r2

m2
B2

)
A + A

(
B1 +

r2

m2
B2

)
= −m

(
C1 +

r3

m3
C2

)
, (11c)
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A

(
C1 +

r2k−1

m2k−1
C2

)
−

(
C1 +

r2k−1

m2k−1
C2

)
A = m

(
B1 +

r2k

m2k
B2

)
, (11d)(

B1 +
r2k

m2k
B2

)
A−A

(
B1 +

r2k

m2k
B2

)
= m

(
C1 +

r2k+1

m2k+1
C2

)
. (11e)

From (11d) it follows, that for any k ∈ N and s = k + 1, k + 2, . . . we
have relation

A

(
C1 +

r2s−1

m2s−1
C2

)
−

(
C1 +

r2s−1

m2s−1
C2

)
A =

A

(
C1 +

r2k−1

m2k−1
C2

)
−

(
C1 +

r2k−1

m2k−1
C2

)
A+(

r2s−1

m2s−1
− r2k−1

m2k−1

)
(AC2 − C2A) = m

(
B1 +

r2s

m2s
B2

)
,

i.e. (
r2s−1

m2s−1
− r2k−1

m2k−1

)
(AC2 − C2A) =

m

(
B1 +

r2s

m2s
B2

)
−m

(
B1 +

r2k

m2k
B2

)
.

Whence we obtain AC2 − C2A = rB2. Analogously from (11e) follows
B2A − AB2 = rC2. Using the obtained equalities, from (11d) and (11e)
accordingly, we obtain AC1 − C1A = mB1, B1A − AB1 = mC1. From
(11a) we have A1A = AA1. Thus equalities (10) are valid. We remark,
that systems (10) and (11) are equivalent.

Sufficiency. Let matrix of the system (4) has the form (9) and equal-
ities (10) are valid. We check, that for any k ∈ N the identity

dkP

dtk
(0) ≡ dk−1P

dtk−1
(0)A−A

dk−1P

dtk−1
(0)

is valid. Let Q(t) := e−AtP (0)eAt. As it is proved above, for any k ∈ N
identity

dkQ(t)
dtk

≡ dk−1Q(t)
dtk−1

A−A
dk−1Q(t)

dtk−1

is valid. As Q(0) = P (0) then

dkQ

dtk
(0) =

dkP

dtk
(0).
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Functions P (t) and Q(t) are analytical, hence Q(t) ≡ P (t).

3. Systems with Small Parameter

Obtained results for linear differential system can be extended for
nonlinear systems with small parameter.

Consider the nonlinear differential system depending on parameter ν

ẋ = f (t, x, ν) , t ∈ R, x ∈ D ⊂ Rn, (12)

where f is a continuous 2ω-periodic vector function for all t, small |ν|, and
also continuously differentiable with respect to components of a vector x.
Let x = g0(t) be a 2ω-periodic solution of the system (12) in which ν = 0.

Using concept of a reflecting matrix we can reformulate a following
three theorems.

THEOREM 3.1. Let matrix

F (t) ≡ eAte−2(A+P (0))teAt

be the RM of the linear system (3) with matrix

P (t) =
∂f

∂x

(
t, g0(t), 0

)
.

If there is no unit among solutions µi of the equation

det
(
e−Aωe2(A+P (0))ωe−Aω − µE

)
= 0,

then system (12) with sufficiently small |ν| has the unique 2ω-periodic so-
lution x = x (t, ν) with an initial point x (0, ν) close to g0(0). Besides,
x (t, ν) is a continuous function with respect to (t, ν), and x (t, 0) = g0(t).
If, moreover, f is continuously differentiable with respect to ν, then x (t, ν)
is also continuously differentiable.

PROOF. Since multiplicators µi for 2ω–periodic linear system with
the RM

F (t) ≡ eAte−2(A+P (0))teAt

are solutions of the equation

det
(
e−Aωe2(A+P (0))ωe−Aω − µE

)
= 0,

therefore validity of this theorem follows from the Theorem 2.3 in [2, p.
488].
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Quasilinear Systems

Let, in particular, the system (12) be quasilinear 2ω-periodic system

ẋ = P (t)x + f(t) + νϕ(t, x), t ∈ R, x ∈ D ⊂ Rn, (13)

where P (t) is a continuous 2ω-periodic n × n matrix; f(t) and ϕ(t, x) are
continuous 2ω–periodic vector function with respect to t, and also ϕ(t, x) is
continuously differentiable with respect to components of a vector x; ν is a
small parameter. The following assertion is a consequence of the Theorem
3.1.

THEOREM 3.2. Let matrix

F (t) ≡ eAte−2(A+P (0))teAt

be the RM of the system ẋ = P (t)x. If there is no unit among solutions
µi of the equation

det
(
e−Aωe2(A+P (0))ωe−Aω − µE

)
= 0,

then system (13) with sufficiently small |ν| has the unique 2ω-periodic so-
lution x = x (t, ν) which satisfies the condition

lim
ν→0

x(t, ν) = x0(t),

where x0(t) is a 2ω-periodic solution of the system ẋ = P (t)x + f(t).

PROOF. Having observed that multiplicators µi for 2ω-periodic linear
system with the RM

F (t) ≡ eAte−2(A+P (0))teAt

are solutions of the equation

det
(
e−Aωe2(A+P (0))ωe−Aω − µE

)
= 0,

therefore we obtain the assertion of the theorem from the Theorem in [1,
p. 226].

Autonomous Systems

Now consider the autonomous differential system depending from parame-
ter ν

ẋ = f(x, ν), x ∈ D ⊂ Rn, ν ∈ R, (14)
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where f is a continuous vector function with respect to small |ν| and x ∈ D,
also continuously differentiable with respect to components of a vector x.
Let x = η(t) 6≡ constant be a 2ω0-periodic solution of the system ẋ =
f(x, 0).

THEOREM 3.3. Let matrix

F (t) ≡ eAte−2(A+P (0))teAt

be the RM of the linear system (3) with matrix

P (t) =
∂f

∂x

(
η(t), 0

)
.

If among solutions µi of the equation

det
(
e−Aω0e2(A+P (0))ω0e−Aω0 − µE

)
= 0

there is unique simple unit, then system (14) with sufficiently small |ν| has
the unique periodic solution x = x(t, ν) close to η(t) with period ω = ω(ν)
close to 2ω0. Moreover, x(t, ν) and ω(ν) are continuous and x(t, 0) = η(t),
ω(0) = 2ω0.

PROOF. Since multiplicators µi for 2ω0–periodic linear system with
the RM

F (t) ≡ eAte−2(A+P (0))teAt

are solutions of the equation

det
(
e−Aω0e2(A+P (0))ω0e−Aω0 − µE

)
= 0,

therefore validity of this theorem follows from the Theorem 2.4 in [2, p.
488].

4. Some Examples

EXAMPLE 4.1. Consider the quasilinear π–periodic system{
ẋ = 1

2

(
(1− cos 2t)x− (2− sin 2t)y

)
+ f1(t) + νϕ1(t, x, y),

ẏ = 1
2

(
(2 + sin 2t)x + (1 + cos 2t)y

)
+ f2(t) + νϕ2(t, x, y),

where f1(t), f2(t), ϕ1(t, x, y), ϕ2(t, x, y) are continuous π–periodic with re-
spect to t scalar functions; moreover ϕ1(t, x, y), ϕ2(t, x, y) are continuously
differentiable with respect to x and y; ν is a small parameter.



12 EDUARD V. MUSAFIROV

It follows from the Theorem 2.3 that respective linear homogeneous
system has matrix of the form (8), where

A =
(

0 −1
1 0

)
.

Then, by Lemma 2.2, the RM of this system is

F (t) ≡ e−t

30

(
F1(t) F2(t)
F3(t) F4(t)

)
,

where

F1(t) ≡
(
15 + 4

√
15

)
cos(2−

√
15)t +

(
15− 4

√
15

)
cos(2 +

√
15)t+

2
√

15 sin
√

15t,

F2(t) ≡ −
(
15 + 4

√
15

)
sin(2−

√
15)t−

(
15− 4

√
15

)
sin(2 +

√
15)t,

F3(t) ≡ −F2(t),

F4(t) ≡ F1(−t).

Therefore, multiplicators of this linear homogeneous system are

µ1,2 = −eπ/2
(
cos

√
15π
2 ± i sin

√
15π
2

)
.

It follows from the Theorem 3.2 that the considered system has an
unique π–periodic solution for sufficiently small |ν|.

EXAMPLE 4.2. Consider the system{
ẋ = y + x

(
1− x2 − y2

)
+ f1 (x, y, ν) ,

ẏ = −x + y
(
1− x2 − y2

)
+ f2 (x, y, ν) ,

where f1, f2 are continuous scalar functions for small |ν|, and also contin-
uously differentiable with respect to x and y; moreover,

fi (x, y, 0) =
∂fi

∂x
(sin t, cos t, 0) =

∂fi

∂y
(sin t, cos t, 0) = 0, i = 1, 2.

If ν = 0 then x0 = sin t, y0 = cos t is the 2π-periodic solution of considered
system. The respective variational system for this solution is{

ẋ = (−1 + cos 2t) x + (1− sin 2t) y,

ẏ = (−1− sin 2t) x + (−1− cos 2t) y.
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It follows from the Theorem 2.3 that this system has matrix of the form
(8), where

A =
(

0 −1
1 0

)
.

Then, by Lemma 2.2, the RM of this system is

F (t) ≡ 1
2

(
1− e4t +

(
1 + e4t

)
cos 2t −

(
1 + e4t

)
sin 2t(

1 + e4t
)
sin 2t e4t − 1 +

(
1 + e4t

)
cos 2t

)
.

Therefore, multiplicators of the variational system are µ1 = 1, µ2 = e−4π.

It follows from the Theorem 3.3 that the considered system with
sufficiently small |ν| has the unique periodic solution x = x(t, ν), y = y(t, ν)
close to x0(t), y0(t) with period ω = ω(ν) close to 2π. Moreover, this
solution and its period are continuous, and x(t, 0) = sin t, y(t, 0) = cos t,
ω(0) = 2π.
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