Республиканское унитарное предприятие «Научно-практический центр Национальной академии наук Беларуси по животноводству»

ЗООТЕХНИЧЕСКАЯ НАУКА БЕЛАРУСИ

Сборник научных трудов, посвященный 60-летию зоотехнической науки Беларуси

Том 44

Часть 1

Жодино
РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»
2009

Редакционная коллегия:

И.П. Шейко — главный редактор, Н.В. Пилюк — зам. главного редактора, М.В. Джумкова — ответственный секретарь, М.В. Барановский, В.М. Голушко, А.С. Курак, И.С. Петрушко, С.А. Петрушко, В.Ф. Радчиков, А.Ф. Трофимов, Л.А. Федоренкова — члены редколлегии.

Рецензенты:

- И.П. Шейко, д-р с.-х. наук, проф., акад.; А.Ф. Трофимов, д-р с.-х. наук, проф., чл.-корр. (РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»);
- И.И. Горячев, д-р с.-х. наук, проф. (УО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины»)
- Зоотехническая наука Беларуси: сб. науч. тр., посвящ. 60-3-85 летию зоотехнической науки Беларуси Т. 44, ч. 1 / Науч.-практический центр Нац. акад. наук Беларуси по животноводству; редкол.: И. П. Шейко (гл. ред.) [и др.]. Жодино: Науч.-практический центр НАН Беларуси по животноводству, 2009. 378, [1] с.

В сборнике дана краткая характеристика состояния и перспектив развития живогноводства Беларуси и излагаются результаты экспериментальных исследований по генетике, разведению, селекции, биологии размножения, воспроизводству, содержанию и использованию сельскохозяйственных животных, выполненных учёными Республиканского унитарного предприятия «Научно-практический центр Национальной академии наук Беларуси по животноводству» и других научных и учебных организаций Беларуси, России и Украины. Книга предназначена для научных работников, преподавателей и студентов зоотехнических учреждений образования, руководителей и специалистов сельскохозяйственных организаций.

УДК 636(476)(082) ББК 45/46(4Беи)

© РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», 2009

О.А. ЕПИШКО

ИСПОЛЬЗОВАНИЕ МАРКЕРНЫХ ГЕНОВ В СЕЛЕКЦИИ СВИНЕЙ БЕЛОРУССКОЙ МЯСНОЙ ПОРОДЫ ДЛЯ ПОВЫШЕНИЯ РЕПРОДУКТИВНЫХ КАЧЕСТВ

УО «Полесский государственный университет»

Введение. Несмотря на значительные успехи в области популяционной генетики, оценка пород, популяций и отдельных животных не может быть полной даже в отношении формирования продуктивных качеств у потомков, т. к. основана на оценке фенотипического проявления признаков и не охватывает ряд свойств генотипа, наиболее важным из которых является способность к репродукции, проявлению продуктивности, передаче по наследству «генетического груза» и летальных генов, хотя и позволяет отбирать и использовать для целей генетического прогресса, как правило, лучшие родительские формы. По данным Овчинникова А.В., для того, чтобы увеличить многоплодие на 0,8 головы, необходимо в течение 16 лет вести отбор на многоплодие при 50%-ной браковке маток [5].

Одним из подходов повышения эффективности селекционной работы является применение ДНК-маркеров, позволяющих вести отбор и подбор родительских форм на генном уровне, то есть проводить селекцию по генотипу непосредственно на уровне ДНК, не учитывая изменчивость хозяйственно-полезных признаков, обусловленную внешней средой и технологическими факторами, выявлять генетический потенциал животных в раннем возрасте, независимо от пола и своевременно оценивать признаки, которые фенотипически проявляются поздно, или только у животных одного пола, что в итоге даст возможность значительно повысить генетический потенциал животных, осуществить направленное разведение предпочтительных генотипов, ускорить процесс селекции свиней на репродуктивные, откормочные и мясные качества.

Согласно данным научной литературы, такими генами являются ген пролактинового рецептора (PRLR), связанный с биологической способностью свиней к многоплодию и выкармливанию поросят и со-

зреванию ооцитов, и ген бета-субъединицы фолликулостимулирующего гормона (FSHβ), регулирующий фолликулогенез [1, 3, 6, 7].

Однако данные научной литературы достаточно противоречивы. По сообщению исследователей в одном случае позитивное влияние на воспроизводительную функцию животных оказывают одни генотипы, в другом альтернативные.

В связи с этим, возникает необходимость в проведении исследований, направленных на разработку методов применения генов-маркеров репродуктивных признаков в селекции свиней белорусской мясной породы, как основы совершенствования существующих и создания новых генотипов, что позволит решить важную народнохозяйственную проблему — повышение эффективности ведения отрасли свиноводства.

Материалы и методы исследований. Исследования были проведены в течение 2005-2008 гг. в РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству». В качестве объекта исследований были использованы свиноматки и хрякипроизводители белорусской мясной породы, разводимые в РСУП «СГЦ «Заднепровский» Оршанского района Витебской области.

В процессе работы методом ПЦР-ПДРФ анализа исследован полиморфизм генов PRLR у 426 и FSHβ у 421 матки и 50 хряковпроизводителей белорусской мясной породы каждого гена. Для решения поставленных задач были созданы опытные группы свиноматок белорусской мясной породы, по 20 голов в каждой генотипической группе, по генам PRLR и FSHβ.

Однако результаты, полученные в опытных группах, являются подтверждением теоретической модели и наших наблюдений и не отражают те процессы, которые происходят в популяции в целом.

В связи с этим, нами исследован полиморфизм популяции свиноматок белорусской мясной породы и установлена ассоциация полиморфных вариантов генов с продуктивными качествами.

ДНК экстрагировали из проб ткани уха животного перхлоратным методом [2]. Концентрацию, степень очистки, нативность оценивали на спектрофотометре Gene Quant 1300. ПЦР проводили в амплификаторе Gene Amp ® PCR System 2700 фирмы Applied Biosystems.

Из предлагаемых генетическим банком и зарубежными исследователями праймеров нами были подобраны олигонуклеотидные последовательности, обеспечивающие стабильную, специфичную амплификацию фрагментов генов PRLR и FSHB.

PRLR1:5' - CGT GGC TCC GTT TGA AGA ACC - 3'

PRLR2:5' - CTG AAA GGA GTG CAT AAA GCC - 3'

 $FSH\beta F$: - AGT TCT GAA ATG ATT TTT CGG G - 3'

FSHβR: - TTT GCC ATT GAC TGT CTT AAA GG - 3'

Разработаны программы проведения ПЦР, основанные на методи-

ках Short et al. [9] и Rohrer et al. [8], с некоторыми изменениями температурных и временных профилей реакции, что обеспечило оптимальную амплификацию участков генов PRLR и FSH β , несущих точковую мутацию.

Амплификацию генов PRLR и FSH β проводили с использованием реакционной смеси объёмом 25 мкл, содержащей 1хТаq-буфер, 2 мМ дНТФ (4 х 0,5 мМ каждого), 10 пМ каждого праймера, 1,5 ед. акт. Таq-полимеразы, 100-200 нг геномной ДНК.

Концентрацию и специфичность амплификата оценивали электрофоретическим методом в 2%-ном агарозном геле. В качестве маркера использовали ДНК плазмиды pBR 322, расщеплённую рестриктазами. Длина фрагмента гена PRLR составила 163 п.о., FSH β – 713 п.о.

Оптимизированы параметры проведения рестрикции. Для рестрикции амплифицированных участков генов PRLR и FSHβ использовали эндонуклеазы: Alu1 и BsuRI, соответственно. Реакцию проводили при температуре 37°C в течение 3-4 часов, для FSHβ не менее 12 часов в реакционной смеси, содержащей 15 ед. акт., рестриктазы, 15 мкл амплификата. Продукты рестрикции генов PRLR и FSHβ разделяли электрофоретически в 3%- и 4%-ном агарозном геле, соответственно. Растворы для электрофореза готовили по Маниатису [4]. Для анализа распределения рестрикционных фрагментов ДНК в агарозном геле после электрофореза использовали видеосистему VITran.

Результаты эксперимента и их обсуждение. В результате проведённого ДНК-типирования свиней изучаемой породы выявлены отличия частот встречаемости генотипов PRLR ^{AA} и FSH β^{BB} в зависимости от породной, линейной принадлежности и половозрастной группы животных. В популяции свиноматок и хряков-производителей белорусской мясной породы частота встречаемости генотипа PRLR ^{AA} варьировала от 12 до 66 % и от 40 до 83 %, FSH β^{BB} – от 78 до 93 % и от 50 до 100 %, соответственно.

В популяции хряков установлено нарушение генетического равновесия по гену $FSH\beta$ (P<0,001). Объяснением служит то, что данный ген контролирует сперматогенез и детерминирует качественные показатели спермопродукции, по которым ведётся отбор производителей.

Большое значение в процессе воспроизводства играет ген PRLR, детерминирующий биологическую способность маток к многоплодию и выкармливанию поросят, а так же стимулирующий созревание ооцитов, формирование зрелой яйцеклетки. При изучении взаимосвязи полиморфных вариантов гена PRLR с репродуктивными признаками свиноматок опытной группы нами установлена закономерность положительного влияния генотипа PRLR на ряд признаков (таблица 1).

Данные таблицы свидетельствуют о том, что свиноматки генотипа PRLR^{AA} характеризовались большим количеством рождённых поросят

- до 18 % (P<0,05), в том числе живых - до 14 % (P<0,001) в сравнении с животными генотипа PRLR^{BB} Установлена тенденция повышения показателей спермопродукции, плодотворного осеменения маток и их многоплодия в среднем до 12 % у производителей генотипа PRLR^{AA}.

Таблица 1 – Продуктивность популяции свиноматок белорусской мясной породы в зависимости от генотипа по гену PRLR

Помоложения	генотип по гену PRLR (n=426)		
Показатели	AA	AB	BB
Количество голов	92	221	113
Родилось поросят всего, гол.	12,6±0,82*	11,7±0,27^^	10,7±0,27
В том числе живых, гол.	12,0±0,23****	11,0±0,18^	10,5±0,2
Масса гнезда при рождении, кг	17,1±0,41	16,8±0,28	16,5±0,42
Количество поросят в 21 день,			
гол.	$9,8\pm0,25$	$9,5\pm0,14$	$9,4\pm0,22$
Молочность, кг	55,5±1,59	$55,8\pm0,84$	53,4±1,36
Количество поросят при отъ-			
ёме, гол.	$9,5\pm0,14$	$9,5\pm0,14$	$9,2\pm0,22$
Масса гнезда при отъёме в 35			
дней, кг	99,2±2,3	$94,1\pm2,34$	94,3±2,8
Процент аварийных опоросов,			
%	10,1±2,91	12,1±1,85	17,5±2,72

Примечание: разница между показателями генотипов PRLR^{AA} и PRLR^{BB} достоверна при *P<0,05;***P<0,001; разница между показателями генотипов PRLR^{AA} и PRLR^{AB} достоверна при $^{\text{oo}}$ P<0,01; разница между показателями генотипов PRLR^{AB} и PRLR^{BB} достоверна при $^{\text{oo}}$ P<0,05; $^{\text{oo}}$ P<0,01

Таким образом, выявленная закономерность и тенденция увеличения репродукции животных генотипа $PRLR^{AA}$ позволяют рекомендовать использование гена PRLR в селекции свиней белорусской мясной породы для повышения показателей данных признаков.

Учёными разных стран высказано предположение, что ген FSHβ, детерминирующий развитие фолликулов у маток, а у самцов – сперматогенез, также может служить маркером репродуктивной функции свиноматок и воспроизводительной хряков-производителей.

В ходе эксперимента нами было установлено, что свиноматки генотипа $FSH\beta^{BB}$ характеризовались более высоким многоплодием, как в опытной группе, так и в зависимости от их линейной принадлежности (от 4,1 до 13 %).

Было установлено, что свиноматки генотипа FSHβ^{BB} характеризовались более высоким многоплодием, как в целом по популяции, так и в зависимости от линейной принадлежности (таблица 2).

Таблица 2 – Продуктивность популяции свиноматок белорусской мясной породы в зависимости от генотипа по гену FSHβ

Показатели	генотип FSHβ (n=421)		
Показатели	AB	BB	
Количество голов	36	385	
Родилось поросят всего, гол.	$12,2\pm0,54$	$12,5\pm0,4$	
В том числе живых, гол.	$11,1\pm0,17$	$11,5\pm0,42$	
Масса гнезда при рождении, кг	$15,9\pm0,3$	$16,3\pm0,58$	
Количество поросят в 21 день, гол.	$9,7\pm0,15$	$9,8\pm0,16$	
Молочность, кг	53,4±1,15	$55,5\pm1,21$	
Количество поросят при отъёме, гол.	$9,4\pm0,14$	9,8±0,16*	
Масса гнезда при отъёме в 35 дней, кг	$93,6\pm5,2$	101,3±6,5	
Процент аварийных опоросов, %	12,3±4,64	9,9±4,04	

Примечание: разница между показателями генотипов $FSH\beta^{BB}$ и $FSH\beta^{AB}$ достоверна при *P<0,05

Установлено, что свиноматки с генотипом $FSH\beta^{BB}$ превосходили особей с генотипом $FSH\beta^{AB}$ по количеству рождённых поросят на 0,3 поросёнка, или на 2,5 %, в том числе живых — на 0,4 поросёнка, или на 3,6 % и при отъёме — на 0,4 поросёнка, или на 4,5 % (P<0,05), а так же по массе гнезда: при рождении — на 0,4 кг, или на 2,5 %, в 21 день — на 2,1 кг, или на 4 %, при отъёме — на 7,7 кг, или на 8 %, и характеризовались более низким процентом аварийных опоросов (на 2,4 %).

Наши исследования выявили закономерность положительного влияния генотипа $FSH\beta^{BB}$, обеспечившего повышение процента плодотворного осеменения маток на 2,3 % (P<0,05) и их многоплодия на 1,1 поросёнка (P<0,01), и у производителей в сравнении с матками, покрытыми хряками генотипа $FSH\beta^{AB}$.

В ходе эксперимента было установлено, что в отдельности каждый из изучаемых нами генов PRLR и FSH β оказывает определённое положительное влияние на показатели репродуктивных признаков свиноматок и воспроизводительных хряков-производителей белорусской мясной породы.

Таким образом, выявленное положительное влияние предпочтительных генотипов на репродуктивную функцию свиноматок и воспроизводительную хряков-производителей позволяет нам рекомендовать данные гены в качестве маркеров для селекции на повышение многоплодия свиней белорусской мясной породы.

Заключение. В результате проведённых исследований на основе анализа ДНК методом ПЦР-ПДРФ анализа выявленных закономерностей и тенденций разработаны методы применения генов PRLR и

FSHβ в селекции свиней белорусской мясной породы в качестве маркеров, которые рекомендуем применять в племенной работе для повышения репродуктивных качеств.

Литература

- 1. Гладырь, Е. А. Использование маркерных генов в свиноводстве / Е. А. Гладырь, Р. Ю. Арсиенко, В. П. Мичурин // ДНК-технологии в клеточной инженерии и маркирование признаков сельскохозяйственных животных. Дубровицы, 2001. С. 64-67.
- 2. Зиновьева, Н. А. Методы исследований в биотехнологии сельскохозяйственных животных : шк.-практикум. Вып. 3 / Н. А. Зиновьева, Е. А. Гладырь ; под ред. Н. А. Зиновьевой. Дубровицы : ВИЖ, 2004. 60 с.
- 3. Кунаева, Е. К. Использование гена фолликулостимулирующего гормона бетасубъединицы (FSHB) как генетического маркера молочности в свиноводстве / Е. К. Кунаева, Е. А. Гладырь, Н. А. Зиновьева // Сб. науч. тр. межрегиональной науч.-практ. конф. молодых учёных, аспирантов и студентов. Чибоксары : ООО «Полиграф», 2006. С. 204-205
- 4. Маниатис, С. Молекулярное клонирование / Т. Маниатис, Э. Дж. Фриг. М. : Мир, 1984. 480 с.
- 5. Овчинников, А. В. Научные и практические аспекты подбора в племенном и промышленном свиноводстве: дисс... д-ра с.-х. наук / Овчинников А.В. М., 2006. 131 с.
- 6. Effects of ESR1, FSHB and RBP4 genes on litter size in a Large White and a Landrace Herd / X. Wang [et al.] // Arch. Tierz. Dummerstorf. 2006. Vol. 49, № 1. P. 64-70.
- 7. Follicle Selection in Cattle: Role of Luteinizing Hormone Follicle Selection in Cattle / O. J. Ginther [et al.] // Biol. Reprod. 2001. Vol. 64. P. 197-205
- 8. Rohrer, G. A. Mapping the subunit of follicle stimulating hormone / G. A. Rohrer, L. T. Alexander, C. W. Beattie // Mammalian Genome. 2004. Vol. 5. P. 315-317.
- 9. Short, T. H. Effect of estrogen receptor locus on reproduction and production traits in four commercial pig lines / T. H. Short // J. Anim. Sc. − 1997. − Vol. 75, № 12. − P. 3138-3142.

(поступила 27.02.2009 г.)

СОДЕРЖАНИЕ

Попков Н.А., Шейко И.П. Проблемы и пути совершенствования от- раслей животноводства Беларуси	
	3
ГЕНЕТИКА, РАЗВЕДЕНИЕ, СЕЛЕКЦИЯ, БИОТЕХНОЛОГИЯ РАЗМНОЖЕНИЯ И ВОСПРОИЗВОДСТВО	
Батковская Т.В. Мясосальные качества и морфологический состав туш свиней различных генотипов	11
Батковская Т.В. Репродуктивные качества чистопородных и помесных свиноматок при скрещивании с хряками канадской селекции Ганджа А.И., Леткевич Л.Л., Симоненко В.П., Кириллова И.В., Ко-	16
нева И.И., Квитко О.В., Шейко Я.И. Получение эмбрионов in vitro с использованием монослоя клеток гранулёзы	20
Ганджа А.И., Леткевич Л.Л., Симоненко В.П., Кириллова И.В., Лобанок Е.С., Никольская В.П. Усовершенствование условий развития	
зародышей коров вне организма Голубец Л.В., Старовойтова М.П., Отрощенко А.Е. Эффективность	28
использования эстральной сыворотки в культуральных системах in vitro	37
Горбуков М.А., Герман Ю.И., Чавлытко В.И., Борисовец М.К., Дайлидёнок В.Н., Герман А.И. Качество разводимых в Беларуси пород	
лошадей зарубежного происхождения и их использование Горбуков М.А., Герман Ю.И., Дайлидёнок В.Н., Чавлытко В.И.,	44
Герман А.И. Селекционно-генетические параметры признаков отбора лошадей верховых пород Беларуси	50
Горбунов Ю.А., Минина Н.Г., Дешко А.С. Эффективность использования метода биокоррекции репродуктивной функции коров-	
доноров акупунктурой Гридюшко И.Ф., Гридюшко Е.С., Курбан Т.К. Выведение хряков	58
мясного типа в белорусской чёрно-пёстрой породе свиней Гридюшко И.Ф., Гридюшко Е.С., Курбан Т.К. Продуктивный потен-	63
циал свиноматок белорусской чёрно-пёстрой породы, разводимых в племенных предприятиях	7
Гринь М.П., Коронец И.Н., Полянская М.В., Шеметовец Ж.И., Красовская В.М., Сидунова М.Н. Генерационный интервал племенных	
животных различных категорий и селекционные параметры популяции скота белорусской чёрно-пёстрой породы	7'
Дашкевич М.А., Коронец И.Н., Курак О.П., Антонович Н.В., Грибанова Ж.А. Основные хозяйственно-полезные признаки красного бе-	
лорусского скота Епишко О.А. Использование маркерных генов в селекции свиней	84

белорусской мясной породы для повышения репродуктивных ка-	
честв	90
Епишко Т.И., Журина Н.В., Ковальчук М.А. Использование генов	_
RYR1 и H-FABP для повышения мясной продуктивности свиней	95
Коронец И.Н., Климец Н.В., Дашкевич М.А., Шеметовец Ж.И Во-	
робьёва Т.А. Методика оценки племенной ценности коров белорус-	* 1
ской чёрно-пёстрой породы по комплексу признаков	104
Курак О.П. Генотипирование популяции коров белорусской чёрно-	
пёстрой породы по локусу гена каппа-казеина	111
Леткевич Л.Л., Ганджа А.И., Симоненко В.П. Жизнеспособность	
ооцитов коров, полученных из деконсервированных яичников	117
Лобан Н.А., Василюк О.Я Чернов А.С. Совершенствование генеа-	
логической структуры белорусской крупной белой породы свиней	124
Ножинская З.И. Особенности роста и развития тёлок чёрно-пёстрой	
породы белорусского, европейского и североамериканского проис-	
хождения	133
Павлова Т.В., Саскевич С.И., Казаровец Н.В. Экстерьерные особен-	
ности быкопроизводящих коров разного происхождения	141
Тимошенко Т.Н. Влияние хряков породы дюрок канадского гено-	
фонда на продуктивность маточного стада белорусской селекции	149
Федоренкова Л.А., Петрушко И.С., Батковская Т.В. Естественная ре-	
зистентность и биохимический состав крови чистопородного и гиб-	
ридного молодняка свиней	155
Шейко И.П., Федоренкова Л.А., Шейко Р.И., Храмченко Н.М.,	
Янович Е.А. Откормочная и мясная продуктивность молодняка соз-	
даваемого заводского типа в белорусской мясной породе свиней	162
Шейко И.П., Шейко Р.И., Храмченко Н.М., Приступа Н.В., Анихов-	
ская И.В., Мальчевская А.П., Мальчевский А.В. Продуктивность	
свиней канадской селекции в условиях племенной фермы	171
Шейко Р.И., Медведева К.Л. Естественная резистентность и биохи-	
мический состав крови свиней породы ландрас канадской селекции	
в период акклиматизации	
	176
ТЕХНОЛОГИЯ ПРОИЗВОДСТВА, ЗООГИГИЕНА, ЭКОНО-	
мика, содержание	
Барановский М.В., Курак А.С., Кажеко О.А., Навицкая Р.Я., Косто-	
ломов Ю.В. Качество молока в зоне ОАО «Беллакт» для производ-	
ства продуктов детского питания	182
Беззубов В.И., Петрушко А.С., Коломиец Э.И., Сверчкова Н.В.,	
Ананчиков М.А. Использование микробного препарата «Энатин» в	
качестве дезинфектанта свиноводческих помещений	189
Безмен В.А., Дворник В.А., Перашвили И.И. Формирование естест-	

венной резистентности откормочного поголовья свиней в переход-	
ный период года	19
Безмен В.А., Перашвили И.И., Шевчук Н.А Зубарик А.А., Рапович	
С.П. Зоогигиеническая оценка опытного образца установки очистки	
воздуха от вредных газов	20
Будевич А.И., Богданович Д.М., Зубова Т.В., Бровко Т.Н., Объедков	
Г.А. Применение новых экспериментальных биопрепаратов в свино-	
водстве	201
Будевич А.И., Линкевич Е.И., Зубова Т.В., Шейко Е.И. Биофизиче-	
ские методы в воспроизводстве свиней	21
Зуйкевич Т.А. Роль пробиотического препарата «Лактимет» в фор-	
мировании микробиоценоза желудочно-кишечного тракта телят	22
Леткевич В.И., Лобан Р.В., Сидунов С.В., Зыль В.М., Юреня А.С.,	
Мельникова И.Л. Подсосное выращивание помесного лимузин ×	
чёрно-пёстрого молодняка до разного возраста	230
Петрушко И.С., Петрушко С.А., Лобан Р.В., Апанасевич Т.Л., Мель-	,
никова И.Л. Продуктивные качества телят мясного скота разного ге-	
нотипа	236
Попков Н.А., Барановский М.В., Курак А.С., Шибко И.В., Шевцова	25
Г.Г. Совершенствование первичной очистки молока в процессе ма-	
шинного доения коров	243
Попков Н.А., Трофимов А.Ф., Тимошенко В.Н., Музыка А.А., Кова-	۷٦.
левский И.А., Козловская С.В., Гурина Д.В. Усовершенствованные	
технологические решения организации содержания коров на фермах	
с интенсивной технологией производства молока в период раздоя	250
Портной А.И. Оценка качества молока коров северо-восточной зоны	250
Могилёвского региона	259
Садомов Н.А., Ходырева И.А. Использование пробиотических пре-	2.5
паратов в рационе молодняка свиней	266
Сидунов С.В., Леткевич В.И., Лобан Р.В., Зыль В.М., Юреня А.С.,	200
Мельникова И.Л. Сравнительная оценка мясной продуктивности	
молодняка чёрно-пёстрой и лимузинской пород, лимузин × чёрно-	
пёстрых помесей как технологического сырья для производства про-	271
дуктов детского и диетического питания	27
Тараненко Т.И. Динамика роста и сохранность поросят при исполь-	276
зовании ультрафиолетового и узкополосного красного облучения	278
Трофимов А.Ф., Тимошенко В.Н., Музыка М.А., Печёнова М.А., Ба-	
луева Н.А., Гурина Д.В. Влияние препарата «Эраконд» на повыше-	
ние иммунокомпетентных свойств молозива коров и иммунитет те-	20/
NAT	285
Ходосовский Д.Н. Затраты энергоресурсов при выращивании поро-	20
сят-отъёмышей на промышленных комплексах в зимний период	294
Ходосовский Д.Н. Совершенствование технологии выращивания	

ремонтных свинок на крупных свиноводческих комплексах	301
Ходосовский Д.Н., Беззубов В.И., Шацкая А.Н., Перашвили И.И.,	
Петрушко А.С., Михайлов И.А. Затраты энергетических ресурсов в	
зданиях для откорма свиней в зимний период	308
Хоченков А.А. Анализ качественных параметров рационов свиней у	
условиях промышленной технологии	314
Хоченков А.А. Метаболизм и продуктивность свиноматок в зависи-	
мости от сезона года	321
Шляхтунов В.И Пилюк С.Н. Технологические процессы отбора и	
выращивания племенных бычков	329
Шматко Н.Н., Шматко И.Я., Ковалевский И.А., Татаринова Г.М.,	
Скакун А.А., Нагорная З.М., Балуева Н.А. Энергосберегающие тех-	
нологии удаления и использования бесподстилочного навоза при	
производстве говядины	338
SUMMARY	346

Научное издание

ЗООТЕХНИЧЕСКАЯ НАУКА БЕЛАРУСИ

Сборник научных трудов, посвящённый 60-летию зоотехнической науки Беларуси

Том 44 Часть 1

Ответственный за выпуск, редактор, вёрстка Переводчик

М.В. Джумкова А.В. Власик

Подписано в печать 25.08.09 г. Формат 60 х 84/16. Бумага офсетная. Гарнитура Таймс. Печать Riso. Усл.-печ. л. 21,39. Уч.-изд. л. 26,48. Тираж 200 экз. Заказ № 7662

Издатель — Республиканское унитарное предприятие «Научнопрактический центр Национальной академии наук Беларуси по животноводству».

ЛИ № 02330/0131889 от 31 декабря 2004 г. 222160, Минская обл., г. Жодино, ул. Фрунзе, 11.

Отпечатано с оригинал-макета Заказчика в МОУП «Борисовская укрупнённая типография им. 1 Мая».

ЛП № 02330/0150443 от 19.12.08 г. 222120, г. Борисов, ул. Строителей, 33.