УДК 636.2.082.22

ПЛЕЙОТРОПНОЕ ДЕЙСТВИЕ ГЕНА КАППА-КАЗЕИНА НА ВОСПРОИЗВОДИТЕЛЬНЫЕ КАЧЕСТВА КОРОВ

В.В. Пешко¹, Л.А. Танана¹, Т.И. Епишко², Н.Н. Пешко¹, А.Н. Сильванович¹

¹УО «Гродненский государственный аграрный университет»

г. Гродно, Республика Беларусь

²УО «Полесский государственный университет»

г. Пинск, Республика Беларусь

Аннотация. В популяции коров красной белорусской породной группы и белорусской черно-пестрой породы, содержащихся в ЧСУП «Новый Двор — Агро», а также высокопродуктивных коров белорусской черно-пестрой породы в СПК «Обухово» установлен полиморфизм гена каппа-казеина (CSN3). Выявлены генотипы CSN3^{AA}, CSN3^{AB} и CSN3^{BB}. В результате исследований установлено, что между животными различных генетических групп по гену каппа-казеина по показателям воспроизводительной способности различия были незначительными и недостоверными, что указывает на отсутствие негативного действия аллеля CSN3^B на данные показатели коров красной белорусской породной группы и белорусской черно-пестрой породы.

Summary. In a population of cows of red Belarus pedigree group and the Belarus black-motley breed, containing in the private unitary agricultural enterprise «Novu Dvor – Agro», and also highly productive of cows of the Belarus black-motley breed in the Agricultural production co-operative «Obuhovo» it is established po-

lymorphism of a gene of kappa-casein (CSN3). Genotypes CSN3^{4A}, CSN3^{4B} and CSN3^{BB} are revealed. As a result of researches it is established, that between animals of various genetic groups on a gene of kappa-casein on parameters of reproductive ability distinctions were insignificant and doubtful, that specifies absence of negative action allel CSN3^B on the given parameters of cows of red Belarus pedigree group and the Belarus black-motley breed.

Введение. При оценке коров молочных пород большое значение имеет не только высокий уровень молочной продуктивности, но и качественные показатели молока. Содержание белка в молоке и его структура имеют большое экономическое значение для перерабатывающей промышленности, так как в зависимости от этого изменяются затраты сырья, времени и энергии на производство молочных продуктов. Кроме того, этот показатель в значительной степени определяет и качество готовой продукции. Одним из методов повышения эффективности селекционно-племенной работы на увеличение белковомолочности крупного рогатого скота является применение ДНК-маркеров, позволяющих вести отбор и подбор родительских пар по генотипу. Исследования, проводимые белорусскими и зарубежными учеными по поиску маркерных генов [1, 2], связанных с белковомолочностью, свидетельствуют о взаимосвязи содержания белка в молоке с аллельным состоянием гена каппа-казеина (CSN3). Ряд авторов указывают на превосходство коров с генотипом CSN3 $^{\rm BB}$ над животными с генотипами CSN3 $^{\rm AA}$ и CSN3 $^{\rm AB}$ по содержанию белка в молоке, а также на лучшие технологические свойства молока животных с генотипом CSN3 $^{\rm BB}$, позволяющие приготовить больше сыра с более благоприятной композицией [3, 4].

Необходимо признать, что для использования гена каппа-казеина в качестве маркера в селекции на повышение белковомолочности коров недостаточно изучить полиморфизм и выявить его достоверное влияние на продуктивные качества животных, необходимо исключить возможность отрицательного плейотропного эффекта данного гена на ряд селекционируемых признаков и показателей жизнедеятельности.

С повышением потенциала молочной продуктивности крупного рогатого скота большое значение приобрели такие его характеристики, как здоровье и воспроизводительные качества коров, от которых в значительной мере зависит протекание технологического процесса, направленного на получение молока. Для достижения высокого уровня воспроизводства стада необходим регулярный контроль показателей, характеризующих плодовитость каждого животного в отдельности и стада в целом. На сегодняшний день основным критерием воспроизводства стада в хозяйствах Беларуси является выход телят на 100 коров

и нетелей, имеющихся на начало года. Однако этот показатель не отвечает современным требованиям и не характеризует воспроизводительный статус коров. Напротив, зарубежный опыт ведения животноводства рекомендует использование такого показателя, как межотельный период. Он наиболее точно характеризует состояние воспроизводства стада с экономической, физиологической и селекционной точек зрения. Межотельный период — обобщающий показатель, один из ключе-

Межотельный период — обобщающий показатель, один из ключевых индикаторов среди характеристик воспроизводительных способностей коров. Для определения фактического значения данного показателя необходимы сведения о дате отелов (двух или более) по каждому животному. Для этого сначала высчитывают продолжительность интервалов по каждой корове, а затем средний показатель (индекс) для группы животных. Прогнозируемый интервал (или прогнозируемый индекс) определяют путем сложения продолжительности сервиспериода и стельности (СП + 279) по каждому животному, затем высчитывают индекс по группе. Оптимальная величина интервала между отелами составляет 365 дней. Это связано с показателем выхода телят на 100 коров. При продолжительности межотельного периода 365 дней этот показатель равен 100%, что и является физиологической нормой. Межотельный период в 361-380 дней означает хороший статус плодовитости, увеличение от 381 до 400 дней связывают со значительными нарушениями в кормлении и содержании, более 400 дней — неприемлемо, если только молочная продуктивность коровы значительно не превышает среднюю по стаду [5].

Продолжительность сервис-периода оказывает самое большое влияние на вариабельность длительности лактации. Этот показатель определяют для оценки состояния воспроизводительных функций коров. Величина сервис-периода зависит от скорости инволюции матки (восстановление ее нормальной формы, размеров и половой цикличности), на что требуется от 28 до 80 дней. При раннем осеменении (до 30-ти дней после отела) наблюдается очень низкая эффективность осеменений (10-15%), высокая эмбриональная смертность, заболевания полового аппарата и другие отклонения, создающие условия для последующих многочисленных перегулов [6].

При коротком сервис-периоде (21-30 дней) значительное снижение удоев отмечается сразу же через 2-3 месяца после оплодотворения. Этот факт объясняется возникновением в организме животного доминанты беременности, которая в определенной степени является антагонистом лактационной доминанты, что и снижает молочную продуктивность. Для получения теленка каждый год и максимальной продуктивности за лактацию сервис-период не должен превышать 80-85 дней,

а при быстрой смене поколений наиболее эффективны коровы с сервис-периодом 45-60 дней. Показателем кратности осеменений является индекс осеменения — число осеменений, необходимых для оплодотворения. При оптимальном сроке осеменения индекс составляет 1,5; при раннем и позднем сроках осеменения он колеблется от 1,85 до 2,25 [6]. Стандартным считается индекс осеменения 2,0 и ниже [7].

В связи с вышеизложенным целью работы явилось изучение плейотропного действия гена каппа-казеина на воспроизводительные качества коров красной белорусской породной группы и белорусской черно-пестрой породы.

Материал и методика исследований. Полиморфизм гена каппаказеина изучен в популяциях коров красной белорусской породной группы (68 голов) и белорусской черно-пестрой породы (80 голов) в ЧСУП «Новый Двор — Агро» Свислочского района Гродненской области, а также в популяции высокопродуктивных коров белорусской черно-пестрой породы с удоем не ниже 7500 кг, принадлежащих СПК «Обухово» Гродненского района Гродненской области.

Ядерную ДНК выделяли из разбавленной спермы (пайеты) и биопробы ткани перхлоратным методом в ДНК-лаборатории РУП «Научно-практический центр национальной академии наук Беларуси по животноводству». Основные растворы для выделения ДНК, амплификации и рестрикции готовили по Т. Маниатису, Э. Фрич, Дж. Сэмбруку [8]. Для проведения полимеразной цепной реакции (ПЦР) использовали олигонуклеотидные праймеры: CAS1: 5' - ATA GCC AAA TAT ATC CCA ATT CAG T- 3' и CAS2: 5'- TTT ATT AAT AAG TCC ATG AAT СТТ G -3'. Концентрацию ДНК, специфичность амплификата и результаты рестрикции оценивали электрофоретическим методом в агарозном геле, окрашенном бромистым этидием, с помощью трансиллюминатора в проходящем УФ-свете с длиной волны 260 нм. В качестве маркера использовали ДНК плазмиды pBR322, расщепленную рестриктазой AluI. По 10 мкл амплификата расщепляли рестриктазой HindIII при температуре 37 °C в течение 4-х часов. Продукты рестрикции разделяли электрофоретически в 4% агарозном геле при напряжении 100 вольт, в течение 1 часа. Для анализа распределения рестрикционных фрагментов ДНК в агарозном геле после электрофореза использовали компьютерную видеосистему и программу VITran.

Для выявления плейотропного действия гена каппа-казеина изучали ассоциацию с воспроизводительными качествами подопытных животных путем анализа данных зоотехнического учета. По каждому животному определяли возраст первого отела (месяцев), продолжи-

тельность стельности, сервис-периода, сухостойного и межотельного периодов (дней), индекс осеменения животных.

Результаты исследований и их обсуждение. В результате ДНК-тестирования популяций коров красной белорусской породной группы и белорусской черно-пестрой породы установлен полиморфизм гена каппа-казеина. Выявлены животные, имеющие генотипы ${\rm CSN3}^{\rm AA}$, ${\rm CSN3}^{\rm AB}$ и ${\rm CSN3}^{\rm BB}$.

Характеристика воспроизводительных качеств полновозрастных коров красной белорусской породной группы и белорусской чернопестрой породы в зависимости от генотипа каппа-казеина представлена в таблицах 1-3.

Таблица 1 – Характеристика воспроизводительных качеств полновозрастных коров красной белорусской породной группы различных генетических групп по гену каппа-казеина

Показатели	Генотип		
Показатели	CSN3 ^{AA}	CSN3 ^{AB}	CSN3 ^{BB}
Продолжительность сервис- периода, дней	112±45,7	115±35,9	107±16,2
Продолжительность сухостойного периода, дней	54±1,2	55±1,4	55±2,1
Продолжительность стельности, дней	278±1,7	279±1,8	279±0,5
Продолжительность межотельного периода, дней	390±16,9	394±36,2	386±25,1
Индекс осеменения	1,94	1,90	2,00

Анализ данных таблицы 1 свидетельствует о том, что у коров красной белорусской породной группы с генотипом CSN3^{BB} продолжительность сервис-периода была на 5 дней короче, чем у животных с генотипом CSN3^{AA}, и на 8 дней короче, чем у животных с генотипом CSN3^{AB}. У коров с генотипом CSN3^{AA} отмечено снижение продолжительности сухостойного периода и стельности на 1 день по сравнению с животными двух других групп. Межотельный период у всех подопытных групп животных превысил 365 дней, что является негативной тенденцией и причиной недополучения телят на 100 коров. Индекс осеменения у животных красной белорусской породной группы находился в пределах 1,90-2,00.

Таблица 2 – Характеристика воспроизводительных качеств полновозрастных коров белорусской черно-пестрой породы различных генетических групп по гену каппа-казеина

Показатели	Генотип		
	CSN3 ^{AA}	CSN3 ^{AB}	

Продолжительность сервис- периода, дней	101±4,8	106±8,8
Продолжительность сухостойного периода, дней	59±0,2	60±0,6
Продолжительность стельности, дней	281±0,3	280±1,3
Продолжительность межотельного периода, дней	383±4,8	386±9,0
Индекс осеменения	1,89	1,78

Из данных таблицы 2 видно, что у коров белорусской чернопестрой породы с генотипом CSN3 в условиях ЧСУП «Новый Двор — Агро» продолжительность сервис-периода была на 5 дней длиннее, чем у животных с генотипом CSN3 , и находилась в пределах физиологической нормы. Однако установлена тенденция увеличения продолжительности сухостойного периода на 5-6 дней, а стельности — на 2-3 дня по сравнению с аналогичными показателями коров красной белорусской породной группы. Межотельный период у животных белорусской черно-пестрой породы находился в пределах 383-386 дней. Индекс осеменения был ниже у животных с генотипом CSN3 AB — 1,78 против 1,89 у животных с генотипом CSN3 AA .

Результаты исследования воспроизводительных качеств полновозрастных высокопродуктивных коров белорусской черно-пестрой породы в СПК «Обухово» (таблица 3) показывают, что продолжительность сервис-периода по всем изучаемым группам животных составила 105-109 дней, что соответствует нормативному показателю у животных с продуктивностью 6,5 тыс. кг молока и выше [7].

Таблица 3 – Характеристика воспроизводительных качеств полновозрастных высокопродуктивных коров белорусской чернопестрой породы различных генетических групп по гену каппа-казеина

Поморожания	Генотип		
Показатели	Показатели CSN3 ^{AA}	CSN3 ^{AB}	CSN3 ^{BB}
Продолжительность сервис- периода, дней	108±10,4	109±9,5	105±9,8
Продолжительность сухостойного периода, дней	58±1,6	59±1,2	58±1,3
Продолжительность стельности, дней	279±1,6	279±1,3	279±1,7
Продолжительность межотельного периода, дней	387±10,5	388±9,5	384±9,4
Индекс осеменения	1,90	1,89	1,75

Существенных различий по продолжительности сухостойного периода, продолжительности стельности и межотельного периода у высокопродуктивных коров не установлено. Индекс осеменения находился в пределах 1,75-1,90.

Заключение. Таким образом, достоверных различий между показателями воспроизводительных качеств между животными различных генетических групп по гену каппа-казеина не установлено. Отрицательное влияние аллеля $CSN3^B$ на воспроизводительную способность коров не выявлено.

ЛИТЕРАТУРА

- 1. Шейко, И.П. Перспективы использования ДНК-технологий в селекционной работе животноводства Республики Беларусь / И.П. Шейко, Т.И. Епишко // Сб. науч. тр. / Минск, 2007. Т. 6: Молекулярная прикладная генетика. С. 37-44.
- 2. Калашникова, Л.А. Перспективы улучшения технологических свойств молока коров черно-пестрой породы с использованием ДНК-маркеров по гену каппа-казеина / Л.А. Калашникова, Е.А. Денисенко // Современные достижения и проблемы биотехнологии сельскохозяйственных животных: материалы межд. науч. конф. Дубровицы, 2004. С. 12-18.
- 3. Cardak, A.D. Effects of genetic variants in milk protein on yield and composition of milk from Holstein-Friesian and Simmentaler cows / A.D. Cardak // J. of Animal Science. 2005. –Vol. 35, № 1. P. 41-47.
- 4. Craham, E.R. The effect of milk protein genotypes on the cheesmaking properties of milk and on the yield of cheese / E.R. Craham, D.M. Melean, P. Zviedraws // Proceedings of the 4 th Conference of the Australian Association of Animal Breeding and Genetics Adelaide, 1984. P. 136-137.
- 5. Племенная работа и воспроизводство стада в молочном скотоводстве: моногр. / Н.В. Казаровец [и др.]. Горки: «БГСХА», 2001. 212 с.
- 6. Коршун, С.И. Использование конституциональных особенностей телок для раннего прогнозирования молочной продуктивности коров: автореф. дис. ... канд. с.-х. наук: 06.02.01 / С.И. Коршун. Жодино, 2001. 22 с.
- 7. Решетникова, Н. Воспроизводство стада проблема комплексная / Н. Решетникова // Новое сельское хозяйство. 2002. № 2. С. 45-50.
- 8. Маниатис, Т. Молекулярное клонирование / Т. Маниатис, Э. Фрич, Дж. Сэмбрук. Москва: Мир, 1984. 480 с.