Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях

№ 2, 2011 г.

Научный рецензируемый журнал Издается ежеквартально с 2007 г.

Учредитель

Федеральное государственное учреждение здравоохранения «Всероссийский центр экстренной и радиационной медицины им. А.М. Никифорова» МЧС России Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia

Центр сотрудничает со Всемирной организацией здравоохранения (ВОЗ) World Health Organization Collaborating Center

Журнал зарегистрирован

Федеральной службой по надзору за соблюдением законодательства в сфере массовых коммуникаций и охране культурного наследия. Свидетельство о регистрации ПИ № ФС77-27744 от 30.03.2007 г.

Индекс для подписки

в агентстве «Роспечать» 80641

Рефераты статей представлены на сайтах Научной электронной библиотеки http://www.elibrary.ru и ФГУЗ ВЦЭРМ им. А.М. Никифорова МЧС России http://www.arcerm.spb.ru

Компьютерная верстка Т.М. Каргапольцева, В.И. Евдокимов Корректор Л.Н. Агапова Перевод Н.А. Мухина

Отпечатано в РИЦ Санкт-Петербургского университета ГПС МЧС России. 198107, Санкт-Петербург, Московский пр., д. 149. Подписано в печать 24.03.2011. Формат 60х90/8. Усл. печ. л. 15,5. Тираж 1000 экз.

ISSN 1995-4441

Главный редактор С.С. Алексанин (д-р мед. наук проф.)

Редакционная коллегия:

В.Ю. Рыбников (д-р мед. наук, д-р психол. наук проф., зам. гл. редактора), В.И. Евдокимов (д-р мед. наук проф., науч. редактор), Е.В. Змановская (д-р психол. наук), Н.М. Калинина (д-р мед. наук проф.), В.Ю. Кравцов (д-р биол. наук проф.), Н.А. Мухина (канд. мед. наук доц.), А.Д. Ноздрачев (д-р биол. наук проф., акад. РАН), Н.М. Слозина (д-р биол. наук проф.), Б.Н. Ушаков (д-р мед. наук проф.), В.Н. Хирманов (д-р мед. наук проф.), И.И. Шантырь (д-р мед. наук проф.)

Редакционный совет:

В.А. Акимов (д-р техн. наук проф., Москва), А.В. Аклеев (д-р мед. наук проф., Челябинск), В.С. Артамонов (д-р техн. наук, д-р воен. наук проф., Санкт-Петербург), А.Б. Белевитин (д-р мед. наук проф., Санкт-Петербург), Т.М. Валаханович (Минск), С.Ф. Гончаров (д-р мед. наук проф., чл.-кор. РАМН, Москва), Р.М. Грановская (д-р психол. наук проф., Санкт-Петербург), В.П. Дейкало (д-р мед. наук проф., Витебск), А.А. Деркач (д-р психол. наук проф., акад. РАО, Москва), П.Н. Ермаков (д-р биол. наук проф., чл.-кор. РАО, Ростов-на-Дону), Л.А. Ильин (д-р мед. наук проф., акад. РАМН, Москва), В.Л. Марищук (д-р психол. наук проф., Санкт-Петербург), Т.А. Марченко (д-р мед. наук проф., Москва), Ю.В. Наточин (д-р биол. наук проф., акад. РАН, Санкт-Петербург), В.И. Попов (д-р мед. наук проф., Воронеж), М.М. Решетников (д-р психол. наук проф., Санкт-Петербург), П.И. Сидоров (д-р мед. наук проф., акад. РАМН, Архангельск), А.П. Солодков (д-р мед. наук проф., Витебск), И.Б. Ушаков (д-р мед. наук проф., акад. РАМН, чл.-кор. РАН, Москва), Н.С. Хрусталева (д-р психол. наук проф., Санкт-Петербург), В.А. Черешнев (д-р мед. наук проф., акад. РАН и акад. РАМН, Москва), А.Ф. Цыб (д-р мед. наук проф., акад. РАМН, Обнинск), Ю.С. Шойгу (канд. психол. наук доц., Москва), E. Bernini-Carri (проф., Италия), R. Hetzer (д-р медицины проф., Германия), Тагед Веу (д-р медицины проф., Калифорния, США), Kristi Koenig (д-р медицины проф., Калифорния, США)

Адрес редакции:

194044, Санкт-Петербург, ул. Академика Лебедева, д. 4/2, ВЦЭРМ им. А.М. Никифорова, редакция журнала, тел. (812) 541-85-65, факс (812) 541-88-05, http://www.arcerm.spb.ru e-mail: rio@arcerm.spb.ru

© Всероссийский центр экстренной и радиационной медицины им. А.М. Никифорова МЧС России, 2011

СОДЕРЖАНИЕ

Общеметодологические проблемы

Алексанин С.С. Опыт и проблемы медико-психологической помощи ликвидаторам	
последствий аварии на Чернобыльской АЭС в отдаленном периоде	6 15
Медицинские проблемы Бацков С.С., Андреев А.А. Современные подходы к лечению аутоиммунного панкреатита,	
ассоциированного с активной герпесвирусной инфекцией, у участников ликвидации аварии	
на Чернобыльской АЭС	23
Синофф Г., Тиманер В., Малаховски И., Карачун Л., Шапиро С. Онкологическая	
заболеваемость пожилого населения, пострадавшего от аварии на Чернобыльской АЭС: популяция репатриантов в Израиле	28
Барабанова А В., Бушманов А.Ю., Соловьев В.Ю. Анализ наиболее тяжелых случаев облучения	
человека в радиационных авариях, связанных с развитием самопроизвольной цепной реакции	32
Рожко А.В. Зависимость заболеваемости аденомой щитовидной железы от пола, возраста и дозы облучения у населения, пострадавшего в результате аварии на Чернобыльской АЭС	39
Войко Н.И., Бушманов А.Ю. Цереброваскулярные заболевания у военнослужащих инженерно-	33
технического состава войсковых частей специального назначения	42
Марищук В.Л., Платонова Т.В., Князева Е.В. Здоровый образ жизни как средство улучшения	4.0
общего, функционального и психического состояния в экстремальных условиях деятельности Смирнова Н.А., Николаева А.Ш., Леонова Н.В., Чурилова И.В. Оптимизация лечения	48
повреждений кожи различного генеза в комбустиологии и дерматологии	52
Баринова А.В., Баранов В.Л. Особенности функционального состояния эндотелия у больных	-
с гипертонической болезнью	55
Биологические проблемы	
Бычковская И.Б., Степанов Р.П., Федорцева Р.Ф., Сарапульцева Е.И. Особые эффекты малых	
доз и проблема продолжительности жизни животных и человека	58
Дрыгина Л.Б., Зыбина Н.Н. Клиническая лабораторная диагностика в оценке состояния	0.5
здоровья у ликвидаторов последствий аварии на Чернобыльской АЭС в отдаленные сроки	65
у ликвидаторов последствий аварии на Чернобыльской АЭС с дисциркуляторной энцефалопатией	73
Решетняк М.В., Зыбина Н.Н., Хирманов В.Н., Фролова М.Ю. Дополнительные лабораторные	
маркеры метаболического синдрома у ликвидаторов последствий аварии на Чернобыльской АЭС	79
Кравцов В.Ю., Китаева Л.В. Хеликобактериоз и мукоциты с микроядрами в слизистой оболочке желудка у ликвидаторов последствий аварии на Чернобыльской АЭС	84
Ушал И.Э., Дрыгина Л.Б.,Никифорова И.Д., Шантырь И.И., Яковлева М.В. Взаимосвязь	04
биоэлементного статуса с уровнем остеотропных и кальций регулирующих гормонов	
у ликвидаторов последствий аварии на Чернобыльской АЭС	88
Легеза В.И., Селезнев А.Б., Драчев И.С. Экспериментальная оценка эффективности селективных антагонистов серотониновых 5HT3-рецепторов как средств профилактики	
симптомокомплекса первичной реакции на облучение при радиационных авариях	93
Аль Меселмани М.А., Солодова Е.К., Евсеев А.В., Шабанов П.Д. Отсроченные эффекты	
однократного низкодозового радиационного ү-облучения на тканевое дыхание и морфогенез	
сперматоцитов в семенниках крыс	98
Психологические проблемы	
Буртовая Е.Ю., Аклеев А.В., Шалагинов С.А. Психосоциальные аспекты переселения жителей	
села Муслюмово Челябинской области вследствие чрезвычайных ситуаций на производственном	
объединении «Маяк»	105
Науковедение. Организация и проведение научных исследований	
Евдокимов В.И. Анализ авторефератов диссертаций по проблемам ликвидации последствий	
аварии на Чернобыльской АЭС (1990–2010 гг.)	109
Информация	
Банк биоматериалов от ликвидаторов последствий аварии на Чернобыльской АЭС как основа	
проспективного изучения влияния малых доз радиации на организм человека	116
Рофораты ототой	110
• •	118 122
Решением Президиума ВАК Минобрнауки РФ (19.02.2010 г. № 616) журнал включен в «Перечень веду рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные науч	
результаты диссертаций на соискание ученых степеней доктора и кандидата наук».	-

УДК [576.311.347:612.617.6:614.876]:0.29.9

М.А. Аль Меселмани, Е.К. Солодова, А.В. Евсеев, П.Д. Шабанов

Гомельский государственный медицинский университет, Республика Беларусь; Смоленская государственная медицинская академия; Военно-медицинская академия им. С.М. Кирова, Санкт-Петербург

В опытах на крысах изучали процессы митохондриального окисления в семенниках крыс и особенности их морфологии в разные сроки (3-, 10-, 40-, 60-, 90-е сутки) после общего однократного низкодозового у-облучения (1,0 Гр). Облучение активировало тканевое дыхание сперматоцитов в семенниках, но вызывало разобщение окисления и фосфорилирования. Морфологические исследования выявили элементы деструкции канальцевого аппарата семенников (3–10-е сутки после облучения) и признаки последующего восстановления их структуры (90-е сутки). Сделан вывод, что признаки восстановления структуры и функции семенников регистрируются лишь через 3 мес после однократного у-облучения. При этом полностью восстанавливаются показатели дыхательной активности митохондрий, исчезают признаки отека стромы семенников, происходит частичное восстановление поврежденного радиацией сперматогенного эпителия.

Ключевые слова: семенники, митохондрии, окисление, малые дозы ү-излучения, семенные канальцы, сперматогенный эпителий, крыса.

Введение

Изучение воздействия ионизирующего излучения на организм и его отдаленных последствий представляет важную медико-биологическую проблему. Значимый ее раздел составляет действие малых дозу-излучения (низкодозовое облучение) на состояние половых желез [5, 8, 19]. Побочные эффекты радиации нередко выявляются на различных этапах лечения заболеваний, требующих применения лучевой терапии. Установлено, что после сеансов облучения у мужчин может существенно снижаться функциональная активность клеток Лейдига, которые, как известно, продуцируют около 75 % тестостерона [12, 18, 20]. Так, например, тотальное облучение больных, страдавших острой лимфобластной лейкемией, всегда осложнялось нарушением функции этих клеток [16]. Установлено, что, помимо клеток Лейдига, высокой чувствительностью к радиации отличаются клетки Сертоли [17]. Есть сведения, что количество этих клеток в ткани яичка существенно уменьшается даже после использования ничтожно малых доз ү-излучения (0,1 Гр), но при условии многократного воздействия [19, 20].

Согласно имеющимся данным, митохондрии сперматоцитов крайне чувствительны к воздействию проникающей радиации [11], что не исключает вероятности повреждения гонад в случае получения малых доз облучения. Результаты многочисленных исследований детально характеризуют роль процессов митохондриального окисления в физиологических реакциях [1,

2, 5], в том числе и контролирующих состояние мужской репродуктивной системы, так же как и нежелательные эффекты радиационного воздействия на семенники [5, 10, 17]. Тем не менее, сведения об особенностях течения процессов митохондриального окисления в сперматоцитах после воздействия на организм малых доз ү-излучения в литературе практически отсутствуют.

Цель настоящего исследования – изучение процессов митохондриального окисления в семенниках крыс и особенностей их морфологии в разные сроки после общего однократного низкодозового у-облучения.

Материалы и методы

Опыты выполнили на 96 белых крысах-самцах линии Wistar массой 200-220 г в соответствии с требованиями нормативных актов международной практики проведения лабораторного эксперимента. Предварительно крыс делили на 6 групп по 16 животных. Контрольную группу облучению не подвергали. Животных опытных групп облучали с помощью установки «ИГУР-1» однократно. Доза облучения составляла 1,0 Гр, что соответствовало мощности 0,92 Гр/мин. Опытные группы обозначали как 3с, 10с, 40с, 60с, 90с. Числовое значение соответствовало суткам наблюдения. Таким образом, умерщвление животных группы 3с проводили по истечении 3 сут с момента облучения, группы 10с – через 10 сут и т.д. Выделенные семенники промывали в физиологическом растворе хлорида натрия, освобождали от соединительной ткани и продавливали через плунжер с диаметром отверстий 0,5 мм. В полученных образцах ткани полярографическим методом изучали параметры митохондриального окисления с использованием электрода Кларка в ячейке термостата объемом 2 мл при температуре 25 °C [1, 2]. Содержание белка в образцах определяли биуретовым методом [4, 5].

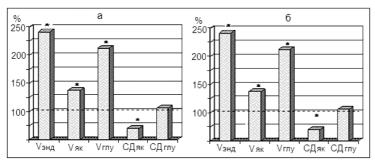
Для оценки состояния тканевого дыхания (ТД) и окислительного фосфорилирования (ОФ) определяли скорость поглощения кислорода тканью семенников на эндогенных (Vэнд) и экзогенных субстратах, а также в присутствии разобщителя процессов ОФ – 2,4-динитрофенола 100 мкмоль (Уднф). В качестве экзогенных субстратов использовали сукцинат - 5,0 ммоль (Vяк) и глутамат – 5,0 ммоль (Vглу). В ходе опыта осуществляли ингибиторный анализ с помощью блокаторов электронно-транспортной цепи митохондрий: ингибитора I комплекса дыхательной цепи амитала натрия 1,0 ммоль (Vaм) и ингибитора сукцинатдегидрогеназы - малоната натрия 1,0 ммоль (Умал). Скорость потребления кислорода в образцах измеряли в нмольО₂/(мин·мг) белка [3, 6]. Наряду с этим, рассчитывали параметры стимулирующего действия (СД) янтарной кислоты – СДяк = Vяк/Vэнд, глутамата – СДглу = Углу/Уэнд и 2,4-динитрофенола – СДднф = Уднф/Углу, а также коэффициенты амиталрезистентного (АРД = Vam/Vэнд) и малонатрезистентного дыхания (МРД = Vмал/ Vaм). Показатели АРД и МРД характеризовали интенсивность окисления флавопротеидзависимых субстратов, позволяя оценить энергетический вклад жирных кислот (ЖК) [13, 14].

В параллельных морфологических исследованиях семенники облученных животных фиксировали в 10% растворе нейтрального формалина и заливали парафином. Далее готовили гистологические срезы толщиной 6–7 мкм, которые окрашивали гематоксилином – эозином. В срезах подсчитывали число извитых семенных канальцев, определяли типы канальцев. Количественную оценку состояния сперматогенеза проводили в 100 поперечно срезанных извитых канальцах семенников крыс контрольной группы и 3 опытных групп – 3с, 10с, 90с, т. е. через 3, 10 и 90 сут после облучения. Извитые семенные канальцы по степени деструкции сперматогенного эпителия подразделяли на 5 типов [5]:

• І тип — извитые канальцы с нормальным строением, содержащие клетки разной степени дифференцировки, располагавшиеся концентрически в соответствии со стадиями развития;

- II тип канальцы с признаками легких нарушений структуры сперматогенного эпителия;
- III тип канальцы, имеющие выраженные повреждения сперматогенного эпителия;
 - IV тип опустошенные канальцы;
- V тип канальцы с незавершенным сперматогенезом, но без признаков дегенерации половых клеток.

Статистическую обработку полученных данных проводили с помощью компьютерной программы Statistica for Windows 5.0.


Результаты и их обсуждение

Установлено, что ткань семенников крыс отличалась высоким уровнем дыхательной активности митохондрий и повышенной чувствительностью к воздействию учизлучения в дозе 1,0 Гр.

Через 3 сут (группа 3с) после облучения наблюдали достоверное снижение интенсивности дыхания митохондрий в семенниках на эндогенных субстратах с $(3,19 \pm 0,02)$ нмоль $O_2/$ (мин·мг) в контроле до $(2,72 \pm 0,07)$ (на 15 %). После добавления в среду инкубации экзогенных субстратов наблюдали тенденцию к увеличению скорости дыхания митохондрий (рис. 1, а). Также отмечали статистически значимое снижение уровня содержания внутримитохондриального сукцината, что подтверждено ростом коэффициента СДяк на 42 %. Полученные на этом этапе исследования данные позволили выявить наличие разобщения процессов окисления и фосфорилирования в митохондриях ткани семенников, что проявилось значимым снижением коэффициента СДднф с (1,33 \pm 0,08) до $(1,18 \pm 0,04)$ (на 11 %). Следует отметить, что феномен разобщения процессов ОФ в изолированных митохондриях, отмеченный в опытах с применением общего радиоактивного воздействия, принято относить к признакам наступления раннего пострадиационного периода [9, 12, 20]. Кроме того, разобщение процессов ОФ может встречаться и при воздействии гипоксии [7], вибрации [1, 2] и других повреждающих факторов.

Применение специфических ингибиторов ОФ, таких как амитал натрия и малонат натрия, позволило к концу 3 сут наблюдения выявить снижение скорости ТД в семенниках при окислении эндогенных субстратов. Так, отмечали достоверное снижение Vaм и Vмал с (2,53 \pm 0,15) и (2,15 \pm 0,31) нмольО $_2$ /(мин·мг) в контроле соответственно до (1,94 \pm 0,03) и (1,15 \pm 0,12) нмольО $_2$ /(мин·мг), т. е. на 23 и 47 % соответственно.

Через 10 сут (группа 10с) после облучения метаболическая ситуация в ткани семенников

Рис. 1. Показатели митохондриального дыхания в ткани семенников через 3 сут (а) и 10 сут (б) после однократного γ -облучения. За контрольные значения принят уровень 100 %. * p < 0,05 по отношению к контролю.

существенно изменялась (см. рис. 1, б). Первично наблюдаемое ослабление процессов ТД и ОФ сменялось их активацией. Так, интенсивность дыхания митохондрий в препаратах семенников на эндогенных субстратах возрастала с $(3,19\pm0,02)$ в контроле до $(7,72\pm0,24)$ нмольО $_2$ / (мин·мг) (на 142%). В присутствии экзогенных субстратов отмечали усиление дыхательной активности митохондрий на 38% – для сукцината и на 112% – для глутамата. Также наблюдали увеличение скорости ТД в присутствии разобщителя ОФ 2,4-динитрофенола на 87% с сохранением достоверности феномена разобщения, что подтверждалось коэффициентом СДднф.

В период с 40-х по 60-е сутки наблюдения (группы 40с и 60с) ТД в семенниках продолжало сохранять повышенный уровень активности (рис. 2), достигая к 60-м суткам на эндогенных субстратах (10,92 \pm 1,19) нмольО $_2$ /(мин·мг) (выше исходного на 94 %), а на экзогенных – (18,12 \pm 3,04) (Vяк) и (14,54 \pm 0,62) (Vглу) нмольО $_2$ /(мин·мг), т. е. активность митохондрий превышала контрольные значения этих показателей на 82 и 80 % соответственно.

Результаты ингибиторного анализа, выполненного через 40 и 60 сут после облучения животных, с одной стороны, позволили обнару-

жить достоверное увеличение интенсивности процессов ТД в семенниках после однократного низкодозового облучения (увеличение Vам и Vмал), что подтвердило феномен стимулирующего влияния малых доз радиации на работу митохондрий. С другой стороны – было отмечено снижение резервов ЖК в изученных препаратах, что проявлялось в достоверном уменьшении коэффициента АРД с $(0,72\pm0,04)$ в контроле до $(0,58\pm0,06)$, т. е. на 19 % (рис. 3).

Через 60 сут опыта выявленные изменения метаболизма янтарной кислоты в ткани семенников подтвердили инициацию восстановительных реакций в митохондриальном компартменте, что также прослеживалось достоверной активацией процессов окисления жирных кислот, т. е. увеличением показателей Vам и Vмал. Рост коэффициентов АРД к 60-м суткам, а МРД к 40-м суткам после облучения до (0.74 ± 0.14) и (0.84 ± 0.05) соответственно по сравнению с (0.72 ± 0.04) и (0.66 ± 0.02) в контроле, в свою очередь, свидетельствовал о формировании позитивных сдвигов в системе ФАД-зависимого дыхания. Однако более заметное увеличение МРД подчеркнуло особую значимость жирных кислот для энергетических превращений в семенниках в этот период наблюдения (см. рис. 3). Принимая во внимание последнее, следует отметить, что повышение АРД и МРД, зачастую, может сопровождаться спадом эффективности энергетического обмена.

В соответствии с полученными данными, на 40-е и 60-е сутки после облучения происходило достоверное снижение показателя СДднф с (1,21 \pm 0,08) (контроль) соответственно до (1,09 \pm 0,02) (на 10 %) и (1,06 \pm 0,12) (на 12 %), что все еще позволяло констатировать присутствие разобщения в системе окисления и фосфорилирования.

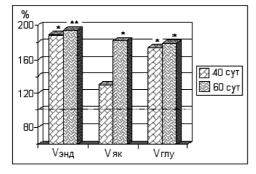
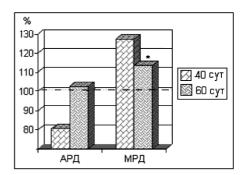



Рис. 2. Показатели митохондриального дыхания в ткани семенников через 40 и 60 сут после однократного у-облучения.

Рис. 3. Влияние специфических ингибиторов на митохондриальное дыхание в ткани семенников через 40 и 60 сут после однократного γ-облучения.

Содержание извитых канальцев с различной степенью нарушения сперматогенеза
в семенниках через 3. 10 и 90 сут после однократного у-облучения

Группа	Число	Число канальцев, %						
	канальцев	I тип	II тип	III тип	IV тип	V тип		
	(об.10, ок.10)							
Контроль	40,50 ± 0,55	77,00 ± 2,87	20,50 ± 0,98	1,90 ± 0,36	0,60 ± 1,10	0		
3c	28,30 ± 0,27	0	2,25 ± 0,09*	93,83 ± 1,46*	3,80 ± 0,49	0		
10c	29,30 ± 0,62*	1,56 ± 0,38*	3,30 ± 0,42*	82,30 ± 3,85*	12,74 ± 1,27*	0		
90c	40,50 ± 0,54	38,25 ± 1,85*	39,75 ± 1,93*	11,25 ± 1,58*	9,00 ± 0,12*	1,75 ± 0,06		

* p < 0,05 по отношению к контролю.

Спустя 90 сут после облучения (группа 90с) активность дыхания в митохондриях ткани семенников по сравнению с периодом 40-60 сут по большинству параметров начинала возвращаться к исходному уровню, выявлялись отчетливые признаки восстановительных реакций. В частности, отмечали достоверное снижение скорости эндогенного дыхания до $(6,94 \pm 0,20)$ нмольО₂/(мин⋅мг) (отличие от контроля составляет 23 %). В присутствии экзогенных субстратов, а также 2,4-динитрофенола скорость дыхания митохондрий практически не отличалась от контрольных показателей. И хотя коэффициент стимулирующего действия СДяк все еще оставался высоким, коэффициент СДглу достоверно снижался на 20 %, что могло быть связано с увеличением внутримитохондриального пула глутамата. В свою очередь, повышение СДднф до $(1,31 \pm 0,08)$ свидетельствовало в пользу полного восстановления сопряжения между процессами окисления и фосфорилирования в митохондриях семенников. Следует отметить, что показатели АРД и МРД через 90 сут после облучения также возвращались к своим исходным величинам.

Морфологическими исследованиями было установлено, что выявленные в ответ на однократное γ-облучение в дозе 1,0 Гр изменения активности процессов митохондриального окисления в семенниках крыс сопровождаются характерными нарушениями их строения (таблица, рис. 4). Так, на срезах семенников было обнаружено не только достоверное уменьшение в них числа извитых канальцев, но также изменение соотношений между канальцами I–IV типов.

Исследования показали, что через 3 и 10 сут с момента облучения (группы 3с и 10с) число извитых канальцев в семенниках крыс уменьшалось приблизительно на 30 % (см. таблицу). Однако через 90 сут после облучения (группа 90с) число семенных канальцев практически не отличалось от исходного значения. Снижение числа канальцев в группах животных 3с и 10с, по-видимому, было обусловлено развитием отека межканальцевой стромы. Наблюдения показали, что в ходе формирования отека из-

витые канальцы отделялись друг от друга, а сосуды семенников заметно расширялись.

Существенные изменения структуры сперматогенного эпителия канальцев были выявлены уже спустя 3 сут после облучения крыс. Как видно из таблицы, в семенниках крыс группы 3с присутствовали извитые канальцы II, III и IV типов, но практически не наблюдалось канальцев с нормальным строением, т. е. канальцев типа I. Наибольший процент извитых канальцев в семенниках крыс групп 3с и 10с был представлен канальцами III типа с выраженными признаками повреждения сперматогенного эпителия. Канальцы III типа у животных группы 3с составили 93,8 %, а у животных группы 10с – 82,3 % против 1,9 % в контроле (см. рис. 4, а).

Морфологически в канальцах III типа в основной массе сперматид и сперматоцитов присутствовали различные признаки дегенерации (см. рис. 4, б). Эти клетки, как правило, имели множественную вакуолизацию цитоплазмы. В отдельных половых клетках удавалось наблюдать гиперхромность ядра, но в большинстве случаев отмечали признаки ядерного лизиса. Границы между клетками сперматогенного эпителия становились нечеткими. Многие из них, утратив связь с поддерживающими клетками, сустентоцитами, выпадали в просвет канальцев, где вследствие лизиса полностью теряли ядерный аппарат. Такие изменения, предположительно, могли быть обусловлены прямым влиянием радиации на межклеточные контакты сперматогенного эпителия [10]. В эпителии канальцев на месте погибших сперматоцитов нередко возникали полости округлой формы. В ряде случаев происходило заполнение просветов извитых канальцев III типа клеточным детритом, состоящим из погибших сперматозоидов, сперматогоний и сперматоцитов. В некоторых канальцах отмечали появление семенных шаров – крупных структур с множественными, часто пикнотичными ядрами или их фрагментами и интенсивно окрашенной цитоплазмой. Семенные шары, как известно, образуются за счет слияния сперматид в сперматогенном эпителии и последующего их отторжения в просвет канальцев.

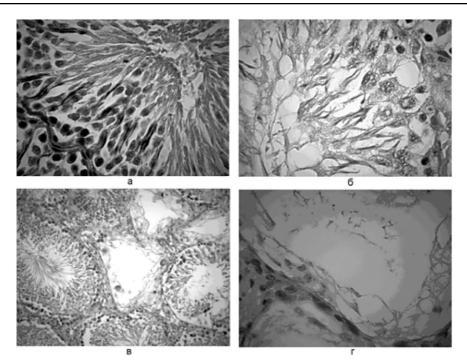


Рис. 4. Ткань семенников после однократного γ-облучения крыс. а – стенка извитого канальца с нормальным строением – І тип; б – сперматогенный эпителий с признаками дегенерации – каналец ІІІ типа; в – через 10 сут после облучения. Семенные канальцы І, ІІІ и ІV типов; г – опустошенный семенной каналец ІV типа. а, б, г — об. 15, ок. 40; в — об 15, ок. 10.

Несмотря на высокую устойчивость эпителиальных клеток сперматогенного эпителия к радиации по сравнению с мужскими половыми клетками [13, 15], в некоторых канальцах III типа наблюдали изменения структуры сустентоцитов. Многие из сустентоцитов теряли часть своей цитоплазмы в связи с ее отторжением в просвет канальцев вместе с дегенеративно-изменившимися сперматоцитами, сперматидами и сперматозоидами. Часть клеток сперматогенного эпителия оставалась прикрытой цитоплазмой поддерживающих клеток, что, как известно, крайне важно для реализации их барьерной функции [17].

В процессе работы ко II типу канальцев были отнесены канальцы с признаками легкого нарушения сперматогенеза в отдельных клетках. Деструктивные изменения в этих канальцах проявлялись, прежде всего, в изменениях на уровне ядерного аппарата мужских половых клеток (кариорексис, кариопикноз, кариолизис). Содержание канальцев II типа у крыс контрольной группы составило 20,5 %. По завершении 3 сут после облучения животных их количество достоверно снижалось до 2,7 %.

Спустя 10 сут с момента облучения крыс в срезах семенников находили канальцы 4 типов – I, II, III и IV. Однако, как видно из таблицы, канальцы с нормальным строением (I тип) и с призна-

ками легкого нарушения сперматогенеза (II тип) встречались в группе 10с гораздо реже, чем в контроле. Канальцы I типа составляли лишь 1,6 % против 77,0 % в контрольной группе. Процент канальцев II типа у животных группы 10с составил 3,3. Таким образом, процент канальцев с признаками легкого нарушения сперматогенеза у животных через 10 сут превышал таковой для группы 3с, но был значительно ниже контроля. Следует отметить, что через 10 сут опыта в срезах семенников все же преобладали канальцы III типа (см. рис. 4, в), что составило 82,3 % от общего числа. При этом процент канальцев IV типа возрастал до 12,7 (в контроле – 0,6 %).

К IV типу извитых канальцев были отнесены опустошенные извитые семенные канальцы с диаметром в нескольких раз меньшим, чем у канальцев других типов (см. рис. 4, г). Пристеночно в большинстве канальцев IV типа сохранялось некоторое количество сперматогоний и часть сустентоцитов, но последние были лишены основной части своей цитоплазмы и уплощены.

Спустя 90 сут с момента облучения животных (группа 90с), морфологическая картина в семенниках заметно улучшалась. Отмечали положительную динамику прироста процентного содержания канальцев с нормальным строени-

ем (Ітип). Несмотря на то, что процент этих канальцев все еще был в 2 раза ниже, чем в контроле, в сравнении с прочими группами животных показатель становился существенным (38,2%). Канальцы ІІтипа у животных группы 90с составили примерно такой же процент (39,7%). Обращает на себя внимание факт значительного снижения на момент завершения опыта, т. е. через 90 сут, в семенниках крыс процентного содержания канальцев ІІІ типа. Необходимо подчеркнуть, что спустя 3 и 10 сут после облучения канальцы ІІІ типа в семенниках составляли абсолютное большинство.

Таким образом, полученные данные свидетельствуют в пользу повышенной чувствительности ткани семенников крыс к действию малых доз ү-излучения (1,0 Гр), что было подтверждено дестабилизацией большинства показателей, характеризующих процессы ТД и ОФ в клетках сперматогенного эпителия и изменениями структуры канальцевого аппарата половых желез.

Выводы

- 1. Через 10–60 сут после однократного общего γ -облучения (1,0 Гр) крыс процессы тканевого дыхания в семенниках существенно активируются, что подтверждается динамикой изменений большинства показателей дыхательной функции митохондрий, однако эта активация протекает с признаками разобщения процессов окисления и фосфорилирования.
- 2. Изменения процессов тканевого дыхания в семенниках крыс, подвергнутых воздействию низкодозового γ -излучения, сопровождаются изменениями микроструктуры гонад. Наиболее отчетливые морфологические изменения в семенниках крыс наблюдаются через 3–10 сут от момента облучения.
- 3. Через 90 сут после однократного общего облучения крыс в дозе 1,0 Гр в семенниках выявляются признаки восстановления их структуры и функции. Показатели дыхательной активности митохондрий возвращаются к исходному уровню, исчезают признаки отека стромы семенников, происходит частичное восстановление повреждённого радиацией сперматогенного эпителия.

Литература

- 1. Воробьева В.В. Функциональная активность системы энергопродукции миокарда кролика при воздействии общей вибрации / В.В. Воробьева, П.Д. Шабанов // Рос. физиол. журн. им. И.М. Сеченова. 2009. Т. 95, № 1. С. 19–26.
- 2. Воробьева В.В. Биоэнергетические феномены при стрессирующем воздействии локальной

- вибрации и защитном действии янтарной кислоты / В.В. Воробьева, П.Д. Шабанов // Мед.-биол. и соц.психол. пробл. безопасности в чрезв. ситуациях. – 2010. – № 4, ч. 1. – С. 87–92.
- 3. Кондрашова М.Н. Руководство по изучению биологического окисления полярографическим методом / М.Н. Кондрашова, А.А. Ананенко. М., 1973. С. 106–119.
- 4. Конопля Е.Ф. Закономерности радиационного поражения репродуктивной системы самцов при хроническом облучении / Е.Ф. Конопля, Г.Г. Верещако, А.М. Ходосовская // Радиация и Чернобыль: ближайшие и отдаленные последствия. Гомель, 2007. С. 105–110.
- 5. Конопля Е.Ф. Отдаленные эффекты внешнего облучения репродуктивной системы половозрелых крыс-самцов / Е.Ф. Конопля, О.Л. Федосенко // Пробл. здоровья и экологии. 2008. № 18. С. 117–119.
- 6. Кочетков Г.А. Практическое руководство по энзимологии / Г.А. Кочетков. М., 1980. 220 с.
- 7. Лукьянова Л.Д. Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты / Л.Д. Лукьянова. – М.: Медицина, 2004. – 520 с.
- 8. Попов Е.Г. Роль исходного состояния ткани коры надпочечников в результате действия внешнего облучения на ее структурно-функциональное состояние и андроген-рецепторное взаимодействие / Е.Г. Попов, Е.Ф. Конопля, Н.В. Бансцкин // Радиац. биол. и радиоэкология. 2005. Т. 45, № 1. С. 46–50.
- 9. Тканевое дыхание печени крыс при облучении в сверхмалых дозах инкорпорированными радионуклидами цезия / А.И. Грицук, Т.Г. Матюхина, А.Н. Коваль [и др.] // Авиакосм. и экол. медицина. 2002. № 4. С. 50–55.
- 10. Троян Э.И. Воздействие инкорпорированных радионуклидов на становление морфофункциональных свойств семенников потомства белых крыс: автореф. дис. ... канд. биол. наук / Троян Э.И. М., 2000. 20 с.
- 11. Bezold G. Accidental radiation exposure and azoospermia / G. Bezold // J. Androl. 2000. Vol. 21. P. 403–408.
- 12. Ceccarelli C. Testicular function after 1311 therapy for hyperthyroidism / C. Ceccarelli // Mol. Cell. Biology. 2006. Vol. 65, N 4. P. 446–452.
- 13. Esfahani A.F. Gonadal function in patients with differentiated thyroid cancer treated with 131 I / A.F. Esfahani // Hell. J. Nucl. Med. 2004. Vol. 7, N 1. P. 52–55.
- 14. Ford W.C. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? / W.C. Ford // Hum. Reprod. Update. 2006. Vol. 12, N 3. P. 269–274.
- 15. Gehlot P. Alterations in oxidative stress in testes of swiss albino Mice by aloe vera leaf extract after gamma irradiation / P. Gehlot, D. Soyal, P.K. Goyal // Pharmacologyonline. 2007. N 1. P. 359–370.
- 16. Kamischke A. Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: a controlled trial in a male nonhuman primate (Macaca

fascicularis) / A. Kamischke // J. Endocrinol. – 2003. – Vol. 179, N 2. – P. 183–194.

- 17. Lambrot R. High radiosensitivity of germ cells in human male fetus / R. Lambrot // J. Clin. Endocrinol. Metab. 2007. Vol. 92, N 7. P. 2632–2639.
- 18. Liang C. Cox7a2 mediates steroidogenesis in TM3 mouse Leydig cells / C. Liang // Asian J. Androl. 2006. Vol. 8, N 5. P. 589–594.
- 19. Mauduit C. Differential expression of growth factors in irradiated mouse testes / C. Mauduit // Int. J. Rad. Oncol. Biol. Physics. 2001. Vol. 50, N 1. P 203–212.
- 20. Ramadoss S. Radiation exposure impairs luteinizing hormone signal transduction and steroidogenesis in cultured human Leydig cells / S. Ramadoss, N. Sivakumar // Toxicol. Sci. 2006. Vol. 91, N 2. P. 550–556.

Уважаемые коллеги!

Приглашаем Вас 14–16 сентября 2011 г. принять участие в работе международной научной конференции «Многопрофильная клиника XXI века: передовые медицинские технологии», посвященной 20-й годовщине создания федерального государственного учреждения здравоохранения «Всероссийский центр экстренной и радиационной медицины имени А.М. Никифорова» МЧС России (Санкт-Петербург).

Основные научные направления конференции

- 1. Многопрофильная клиника XXI века: концепция, направления работы.
- 2. Передовые медицинские технологии диагностики, лечения и реабилитации. Высокотехнологичные виды медицинской помощи.
- 3. Актуальные проблемы и передовые технологии эндовидеохирургии, кардиохирургии, нейрохирургии, травматологии и ортопедии, анестезиологии и реаниматологии.
- 4. Современные проблемы и передовые технологии кардиологии, гастроэнтерологии, урологии, гинекологии, эндокринологии, восстановительной медицины, офтальмологии, ЛОР-патологии, неврологии, лучевой диагностики и терапии.
 - 5. Актуальные проблемы и новые методы клинической диагностики.
- 6. Радиационная медицина. Диагностика, лечение и реабилитация пострадавших от радиационного воздействия.
 - 7. Медицинская генетика, клеточные технологии.
 - 8. Медицинская реабилитация: концепция, современные технологии, методики.
 - 9. Телемедицинские технологии.
- 10. Экстренная специализированная медицинская помощь пострадавшим в чрезвычайных ситуациях природного и техногенного характера.
 - 11. Новое медицинское оборудование.

Заявки на участие в работе конференции и тезисы докладов принимаются в электронном виде по e-mail: ph@peterlink.ru**до 1 мая 2011 г.** Материалы конференции будут изданы в виде сборника.

Объем тезисов докладов до 3 стр. формата А4. Текстовый редактор – Microsoft Word 2003, шрифт – Times New Roman 12-го размера, межстрочный интервал – одинарный, поля – по 2 см с каждой стороны, абзацный отступ – 1 см. Таблицы и рисунки свести до минимума, оформляются вертикально только средствами Word, цвет рисунков – черно-белый, заливка составных частей – косая, перекрестная, штриховая. Легенда рисунков должна быть легко читаемой, шрифт – не менее 8-9-го размера.

При оформлении материалов следует придерживаться ГОСТов: 7.9–95 «Реферат и аннотация. Общие требования», 7.89–2005 «Оригиналы текстовые авторские и издательские». Диагнозы заболеваний и формы расстройств поведения следует соотносить с Международной классификацией болезней 10-го пересмотра (МКБ-10). Единицы измерений приводятся в системе СИ по ГОСТу 8.471–2002 «Государственная система обеспечения единства измерений. Единицы величин».

В сведениях об авторах следует полностью указывать фамилии, имена и отчества авторов, ученые степени и ученые звания, место работы и занимаемые должности, контактные телефоны и электронные адреса. Файлы сохранять по фамилии первого автора с указанием города (Иванов_Москва) как документы *.doc.

Подробные сведения о конференции находятся на официальном сайте ФГУЗ ВЦЭРМ им. А.М. Никифорова МЧС России (http://www.arcerm.spb.ru) и МОО «Человек и здоровье» (http://www.congress-ph.ru), тел. (812) 380-31-55, (812) 380-31-56, секретарь технического комитета Даниил Геннадьевич Чернов.