ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ, ПРИМЕНЯЕМЫХ ПРИ ОЧИСТКЕ СТОЧНЫХ ВОД

А.Э. Крейдич, 5 курс Научный руководитель — О.Н. Жук, к.б.н., доцент Полесский государственный университет

Актуальность. Состояние окружающей среды напрямую связано с качеством очистки сточных вод. Поскольку в современном мире вследствие нарастающей численности населения и запросов общества непрерывно увеличивается формирование новых производств и промышленных предприятий, необходимо совершенствовать и обновлять процессы очистки, а также непрерывно следить за качеством водопроводной и сточных вод на наличие органических и неорганических загрязнителей. Современные технологии очистки сточных вод включают два основных этапа. Первичный этап очистки сточных вод – механический, проводится на каскаде конструкций, которые позволяют избавиться от крупных частиц и извлечь взвешенные вещества из поступившей сточной воды. Сточная вода, очищенная от крупных отбросов, попадает в аэрируемые песколовки. Они предназначены для выделения из сточных вод тяжелых минеральных примесей (главным образом, песка), далее сточная вода поступает в первичные отстойники, где удаляются грубодисперсные примеси. Последним этапом механической очистки является очищение сточной воды от жировых примесей. После механической очистки сточные воды поступают на сооружения, обеспечивающие вторичный этап очистки – биологический. На этом этапес участием аэробных и анаэробных микроорганизмов происходит минерализация органических загрязнений сточных вод, находящихся в виде тонко диспергированных нерастворённых и коллоидных веществ, а также в растворённом состоянии. Биологическая очистка протекает в аэротенках с использованием активного ила (биоценоз зоогенных скоплений (колоний) бактерий и простейших организмов). Микроорганизмы активно перерабатывают соединения, которые являются загрязняющими элементами сточных вод.

Цель – проведение сравнительного анализа сточных вод после этапов механической и биологической очистки.

Материалы и методы. Исследовались пробы каждого этапа очистки сточных вод (первичная, механическая очистка – вход; проба после биологической очистки при помощи активного ила – осветлённый сток; проба после вторичных отстойников, пригодная для слива в реки – выпуск). Определяемые показатели: температура сточных вод, сухой остаток, сульфат-ион, железо общее, фосфор общий, азот общий и другие по ГОСТам (МВИ. МН 4218-2012, СТБ 17.13.05-42-2015, СТБ 17.13.05-45-2016, СТБ ГОСТ Р 51592-2001, ГОСТ 18309- 2014).

Расчет полученных результатов производился по формулам, где определялась общая концентрация исходя из показаний спектрофотометра.

Результаты. Показано, что применяемая в наших исследованиях система механической и микробиологической очистки сточных вод позволяет с высокой степенью качества обезвредить сточные воды города Бреста. После механической очистки содержание железа в сточной воде уменьшается на 61%, продолжение очистки на биологическом этапе позволило получить снижение железа на 89%. Фосфорсодержащих веществ после механической очистки стало меньше на 47,4%, биологическая очистка позволила избавиться до 92% таких соединений. Концентрация азотсодержащих веществ после механической очистки сократилось на 43%, а после проведения биологической очистки — на 98% от исходной. Содержание сульфат-ионов сократилось на 7,24% после механической очистки, биологическая очистка снизила их на 28%. Сухого остатка после механической

очистки стало на 2,6% меньше, а после этапа биологической очистки содержание загрязняющих веществ сократить на 41%.

Выводы. Таким образом, используемая система очистки сточных вод (Йоханнесбургская система – очистка с помощью биоценозов зоогенных скоплений (колоний) бактерий и простейших организмов), позволяет значительно обезвредить сточные воды города и без особого нанесения ущерба окружающей среде направить их в естественные водоемы. С другой стороны, судя по полученным данным, работы по совершенствованию систем очистки сточных вод необходимо продолжать с тем, чтобы до минимума сократить возможные риски, связанные со сбросом уже очищенных по данной технологии вод, обратив особое внимание на поиск более активных видов микроорганизмов или создание высокопродуктивных штаммов используемых микроорганизмов.

Список использованных источников

- 1. Кулишов, С. А. Инновационные подходы к очистке сточных вод от соединений азота в локальных очистных сооружениях / С. А. Кулишов, И. Н. Лыков. 2016. № 14 (118). С. 263-267.
 - 2. Гудков, А. Г. Механическая очистка сточных вод: Учебное пособие. Вологда: ВоГТУ, 2003. 152 с.
- 3. Панов, В. П. Очистка сточных вод от взвешенных веществ и неорганических примесей. М.: НИЦ "Глобус", 2007. T.1. 81 с.
- 4. Колесников, А. В. Методы очистки сточных вод / Колесников, А. В., Лобачева Г. К. 2004. Волгоград: Изд-во ВолГУ, 2004. 272-275 с.