ЦЕЛЛЮЛОЛИТИЧЕСКАЯ АКТИВНОСТЬ БАЗИДИОМИЦЕТОВ И МИКРОМИЦЕТОВ

П.Н. Кузьмин, магистрант, **Д.В. Володько,** 3 курс Научный руководитель — **О.Н. Жук,** к.б.н., доцент **Полесский государственный университет**

Введение. В последние десятилетия грибы уверенно заняли ведущие места в качестве объектов прикладных и фундаментальных исследований во всём мире, во многом благодаря способности продуцировать сложный комплекс внеклеточных окислительных и гидролитических ферментов. Известно более 2000 видов грибов различных таксономических групп способных продуцировать целлюлолитические ферменты, что приводит к разрушению древесины [1, с. 35]. Основными полимерными компонентами клеточных стенок древесины являются целлюлоза, гемицеллюлозы и лигнин. Биотрансформация лигноцеллюлозы с помощью целлюлолитических ферментов имеет большое фундаментальное и прикладное значение. Целлюлазы широко используются в целлюлозно-бумажной промышленности, в переработке лигноцеллюлозных отходов, с их помощью производят напитки и продукты питания, биотопливо, кормовые добавки, биологические моющие средства и фармацевтические препараты, что позволяет отнести их к важным промышленным ферментам [2, с. 8]. Поиск эффективных продуцентов целлюлаз является актуальной задачей современной биотехнологии [3, с. 4694] [4, с. 221].

Цель настоящей работы — сравнительный анализ целлюлолитической активности грибов различных таксономических групп.

Материалы и методы. В качестве объектов для сравнительного анализа целлюлолитической активности были использованы поверхностные культуры 4 штаммов базидиальных грибов (Daedaleopsis confragosa, Sterium hirsutum, Pleurotus ostreatus, Agaricus bisporus) из коллекции УО «Полесский государственный университет» и 5 штаммов аскомицетов (Alternaria alternate БИМ F-119, Fusarium oxysporum БИМ F-609 Г, Aspergillus awamori БИМ F-7, Aspergillus terreus БИМ F-107, Talaromyces funiculosus БИМ F-15) из Белорусской коллекции непатогенных микроорганизмов, любезно предоставленных Институтом микробиологии НАН РБ. Культивировали на питательных средах: сусло-агар, картофельно-сахарозный агар, овсяный агар.

Целлюлолитическую активность оценивали методом диффузии красителя [5, с. 503]. Ковёр мицелия базидиальных грибов площадью 1 см 2 помещали на чашки Петри (d = 90 мм) с КМЦ-агаром (0,2 % NaNO₃, 0,1 % K₂HPO₄, 0,05 % MgSO₄, 0,05 % KCl, 0,2 % Na-KMЦ (DS=1,2), 0,02 % пептон, 1,7 % агар) и инкубировали в термостате при $28\pm1^{\circ}$ С в течение 7 суток. Штаммы микромицетов

высаживали в центр чашек Петри микробиологической петлёй методом точковой инокуляции. В качестве красителя использовали йодный раствор по Граму (2,0 г KI и 1,0 г I_2 на 300 мл дист. H_2O). После инкубации чашки заливали 10 мл йодного раствора по Граму и выдерживали в течение 5 минут. Затем краситель сливали и измеряли диаметр зоны просветления ($d_{\text{зольи}}$) и диаметр зоны роста колонии ($d_{\text{колонии}}$). Целлюлолитическую активность определяли на 3-й, 5-й и 7-й день инкубирования, выражали через относительную целлюлолитическую активность (ОЦА), которая отражает линейную зависимость величины ОЦА с активностью эндоглюканазы среди штаммов грибов [6, с. 6]. ОЦА вычисляли по формуле: [7, с. 44]

OUA = d зоны(мм)/d колонии(мм)

Опыт проводили в трёх повторах. Посев микроорганизмов осуществляли в ламинарном боксе для исключения риска контаминации. Статистическую обработку полученных данных проводили с использованием компьютерной программы Excel 2019.

Результаты и обсуждение

Колонии грибов на КМЦ-агаре имели паутинистую форму, исключение составили колонии *Sterium hirsutum*, которые имели клочковатое строение. Профиль плоский. Эксудат отсутсвовал у всех штаммов. Колонии в большинстве случаев не имели цвета, исключение составили штаммы микромицетов: *Alternaria alternate* БИМ F-119 (чёрный), *Fusarium oxysporum* БИМ F-609 Г (светло-жёлтый) *Aspergillus awamori* БИМ F-7 (чёрный)

Результаты определения целлюлолитической активности поверхностной культуры грибов представлены в таблице.

	U	_
Таблица – Целлюлолитическая активность поверхн	UOCTUOU KUTLTUNL	I LUMUUB
1 dollingd	HOCTHOM KYJIDI YDD	u i phoob

Название	ОЦА 3-й день	ОЦА 5-й день	ОЦА 7-й день	
Базидиомицеты				
Daedaleopsis confragosa	1,17±0,22	1,45±0,08	1,94±0,67	
Sterium hirsutum	1,15±0,33	$0,53\pm0,11$	0,51±0,20	
Pleurotus ostreatus	$0,09\pm0,03$	$0,07\pm0,03$	$0,05\pm0,03$	
Agaricus bisporus	0	0,02±0,01	$0,04\pm0,02$	
Микромицеты				
Alternaria alternate БИМ F-119	$0,60\pm0,26$	$0,42\pm0,04$	0,32±0,09	
Fusarium oxysporum БИМ F-609 Г	0	0,04±0,03	0,05±0,02	
Aspergillus awamori БИМ F-7	0,55±0,01	$0,47\pm0,03$	0,41±0,02	
Aspergillus terreus БИМ F-107	0,40±0,06	0,29±0,02	0,25±0,02	
Talaromyces funiculosus F-15	1,0±0	1,25±0,37	1,58±0,24	

Все исследуемые штаммы оказались способны разрушать КМ-целлюлозу. В наших экспериментах показатели ОЦА различались в зависимости от штамма гриба и времени инкубации. В большинстве случаев она уменьшалась или изменялась незначительно в течение 7 суток инкубации (табл.1). Исключение составили 2 штамма: Daedaleopsis confragosa и Talaromyces funiculosus БИМ F-15, где ОЦА имела наибольшие показатели, которые составили для аскомицета T. funiculosus БИМ F-15 от $1,0\pm0$ (3-й день инкубации) до $1,58\pm0,24$ (7 день инкубации) и от $1,17\pm0,22$ (3-й день инкубации) до $1,94\pm0,67$ (7-й день инкубации) для штамма базидиомицета D. confragosa. Считается, что штаммы с ОЦА > 1,50 являются перспективными продуцентами целлюлаз [6, c. 2].

Выводы. В результате проведения сравнительного анализа целлюлолитической активности поверхностной культуры 9 коллекционных штаммов грибов были выявлены 2 штамма наиболее активных грибов, которые могут быть перспективными штаммами-продуцентами. Это штаммы *Daedaleopsis confragosa* и *Talaromyces funiculosus* БИМ F-15. Результаты данного исследования в дальнейшем будут использованы при получении очищенных препаратов целлюлаз.

Список использованных источников

- 1. Ферментные системы высших базидиомицетов / Н.И. Даниляк [и др.]. Киев.: Наукова думка, 1989. 280 с
- 2. An Overview on Fungal Cellulases with an Industrial Perspective / S. Sajith [etc.] // Journal of Nutrition & Food Sciences. -2016. -Vol. 6, No. 1. -P. 1-13.
- 3. Colonia B.S., Junior A.F. Screening and detection of extracellular cellulases (endo- and exo-glucanases) secreted by filamentous fungi isolated from soils using rapid tests with chromogenic dyes / B.S Colonia, A.F. Junior // African Journal of Biotechnology. − 2014. − Vol. 13, № 52. − P. 4694–4701.
- 4. Поиск грибных продуцентов целлюлолитических ферментов / И.В. Мороз [и др.] // Труды БГУ. -2013. Том 8, часть 1. С. 221–223.
- 5. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram's Iodine / R.C. Kasana [etc.] // Current Microbiology. − 2008. − Vol. 57, № 5. − P. 503–507.
- 6. Florencio C. Correlation between Agar Plate Screening and Solid-State Fermentation for the Prediction of Cellulase Production by *Trichoderma* Strains / C. Florencio, S. Couri, C.S. Farinas // Enzyme Research. − 2012. − Vol. 2012, № 4. − P. 1–7.
- 7. Aakanchha J. Basic Techniques in Biochemistry, Microbiology and Molecular Biology Principles and Technique / J. Aakanchha, J. Richa, J. Sourabh. NY.: Humana Press, 2020. 282 p.