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1. INTRO D U CTION

Scalability is one of the most important require­
ments to modern computational multiprocessor sys­
tems (MS), computer systems (CS), databases, rout­
ers, etc. It implies that a system is capable of increasing 
its performance under changes of hardware and pro­
gram resources. Scalability is now of interest for both 
designers of parallel multiprocessor systems and a dis­
tributed environment of metacomputing [1]. In such 
computer systems, the use of a shared program 
resource (PR) [2] is hindered because of the autonomy 
of processor nodes and the lack of a unified adminis­
tration policy. The distribution o f data and computa- 

l tion processes with the use of structuring and pipelin­
ing [2] is a general feature that makes it possible to 
improve performance of scalable computer systems. 
In connection with this, there is a need in new com­
puting and resource allocation principles, develop­
ment of efficient hardware and software, and optimal 
planning and allocation of computation processes [3]. 
Efficient control of the set of processes that have 
access to shared resources (including, program ones) 
is the task of special importance. A mathematical 
statement of such problems was proposed and ana­
lyzed in [2, 4—6].

In particular, it was shown in [2, 4—6] that the opti­
mal in terms of the number of processes system of dis­
tributed competing processes is found among identi­
cally distributed systems and uniform structurings of a 
program resource into parallel running blocks. The 
uniformity of structuring, however, cannot always be 
achieved in practice, which makes one seek for alter­
native approaches. One of them  involves constructing 
optimal groupings from consecutive blocks o f distrib­
uted processes (all basic concepts and definitions 
including model parameters are given bellow).

In the paper, an algorithm for the optimal grouping 
of distributed processes competing for a linearly struc­
tured program resource is proposed. The algorithm 
requires no more than 0{пъ) elementary operations, 
where n is the number of computation processes of an 
initial identically distributed system.

2. BASIC CONCEPTS 
AND PROBLEM STATEMENT

As in [2, 4—6], we consider a process as a sequence 
of blocks (commands, procedures) Qb Q2, ■■■, Qs that 
are executed on a set of processors (processor nodes, 
processing units, intelligent clients). A process is 
called distributed if all the blocks or some of them are 
processed by different processors. In order to increase 
performance, processes can be processed in parallel by 
exchanging information. Such processes are called 
cooperative or interacting processes.

The concept of a resource is employed to denote 
any objects of a computer system that can be used by 
processes for their own execution. Reenterable (reus­
able) resources can simultaneously be used by several 
computation processes. In the case of parallel systems, 
it is often required to repeatedly execute the same 
block sequence or its part. We will call such a sequence 
a program resource and the corresponding processes 
competing processes.

A mathematical model of a system of distributed 
processing of competing processes involves the follow­
ing: s, s > 2 is the number o f blocks of a linearly struc­
tured program resource PR = (Qx, Q2, ..., Qs); n, n > 2 
is the number of competing processes distributed with 
respect to PR; p ,p >  2 is the number of processors in a 
multiprocessor system; Tp = [̂ -] is the matrix of times 
of executingyth blocks by / th competing processes i =
1, n , j  =  1, s ; and 8 is the time characterizing extra

mailto:kovalenkons@rambler.ru
mailto:pin2535@tut.by


Fig. 1. Asynchronous mode, the unsuperposed Gantt diagram.

system costs on structuring and parallel use of blocks 
of the program resource PR.

As in [4—6], we assume that the interaction 
between the processes, processors, and blocks of the 
linearly structured program resource is subjected to 
the following conditions: (1) none of the blocks PR 
can be processed by more than one processor at a time;
(2) none of the processors can process more than one 
block at a time; (3) each block is processed without 
interruptions; and, (4) for each process, the blocks of 
the program resource are distributed over the MS pro­
cessors cyclically according to the following rule: the
block with the numbery =  kp + /, j  =  1 , s , i =  ] , p , k > 0  
is distributed to the processor with the number i. In 
addition, we introduce extra conditions specifying 
modes of interaction between the processes, proces­
sors, and blocks of PR: (5) there are no downtimes of 
processors provided that the blocks are ready, and 
there are no non-executions of blocks if processors are 
available; (6) for each of n processes, the time of com­
pleting the y'th block on the / th processor coincides 
with the time of beginning the execution of the next
(j + l)th  block on the (i +  l)th  processor, i=  1, p  -  1,

j  =  1, s -  1; and (7) for each block of the structured 
program resource, the time of its completion by the /th 
process coincides with the beginning of its execution 
by the (7 +  l)th  process on the same processor, / =
1, n -  1.

Conditions (1)—(5) describe an asynchronous mode 
of interaction between processes, processors, and 
blocks, which assumes that there are no downtimes of 
the MS processors provided that the blocks are ready, 
and there are no non-executions of blocks if proces­
sors are available.

Conditions (1)—(4) and condition (6) constitute 
the first synchronous mode that provides continuous 
execution of program resource blocks within each 
computation process.

The second synchronous mode described by condi­
tions (1)—(4) and (7) provides continuous execution 
of each block by all the processes.

Definition. A distributed system of n cooperative 
competing processes is called heterogeneous if execu­
tion times of the PR  blocks depend on the amount of 
data to be processed and /o r their structure, i.e., are 
different for different processes.

Definition. A system o f cooperative competing pro­
cesses is called identically distributed if times ц  of exe­

cuting blocks Qpj = 1, s , of the program resource PR 
by each /th process are identical and equal to ?, for all

i=  1, n , i.e., the chain of equalities tn = ta — ... =  tjs — 

holds for all i =  1, n .
Below is an example of a system of distributed pro­

cessing of competing processes for the asynchronous 
mode of interaction between processes, processors, 
and blocks and its mapping by means of linear Gantt 
diagrams. Figures 1 and 2 show non-superposed and 
superposed linear diagrams reflecting the execution of 
n — 4 heterogeneous distributed competing processes 
on the multiprocessor system with p = 3 processors for 
j  =  8 blocks of a structured program resource. Execu­
tion times for each block are shown in the diagrams 
and given by (3 ,1 ,4 ,2 ,1 ,4 ,2 ,1 ) , (2 ,2 ,1 ,1 ,3 ,3 ,2 ,2 ) , 
(1 ,3 ,3 ,1 ,1 ,3 ,3 ,1 ) , and (4 ,1 ,2 ,3 ,1 ,1 ,2 ,5 )  for the first, 
second, third, and fourth processes, respectively. For 
clearness, the times of the first process’ blocks are
highlighted. The overall execution time T@ (p, n, s, s) 
o f heterogeneous distributed competing processes is 
equal to 43  and 3 5  in the cases of the non-superposed 
and superposed diagrams, respectively.

Let Tt = ( t) be the overall time of executing
each block Qj by all n processes with regard to the over­

heads £, ?max =  max =?, + £ , /=  1, n .
I < ! < П

It was proved in [6] that, for identically distributed 
systems of competing processes, the minimum overall



Fig. 2. Asynchronous mode, the superposed Gantt diagram.

time for all the three base modes in the case of unlim­
ited parallelism (s < p) and in the case of limited paral­
lelism (s > p) provided that Tt < p fmax is determined by 
the following formula:

T(p,n,s,  £) = Tl + ( s - l)C x . (1)
while in the other cases, the overall execution time of 
n identically distributed processes that use the pro­
gram resource PR  structured into s blocks in the com­
puting environment with p processors for the asyn­
chronous mode and the mode o f continuous execu­
tion of each block by all the processors is given by

T(jp, n, s, e )

\ k r e + ( p - l ) f n

(2)for s = kp, k>  1, T l> p fmax,

(к + 1 )Г Е + ( г - 1 ) ( етзх,

i o r s  = kp + r, k>  1, 1 < r < p ,  Тг >pzmax,

where Tz =  11) is the overall execution time of
each block Q} by all n processes with regard to over­

heads e, 4ax =  max t , t) = tt + г, i=  \ , n .
\ й і і п

We relate the concept of a set of identically distrib­
uted competing processes and the concept of a linear 
stowage.

Definition. Let M  =  {шь m2, ..., mn} be a finite 
ordered set of items. A partition o f the set M  into / dis­
joint subsets M x, such that each subset is an
assembly of serial elements of the set M  is called a lin­
ear stowage of the set M  of rank I.

By the assumption, times of executing program 
resource blocks by each process coincide ta = ta = ...
=  tjs =  th i = 1, n . Therefore, we consider the sequence 
of the first blocks (Qu , Q2l, Qnl) as elements of the 
set M  and denote this sequence as (qu q2, ..., q„). In 
this case, the linear stowage o f the set M  is obtained by
integrating blocks qh i =  1 ,n  of the serial processes

into a single program block. A linear stowage of blocks
qh i =  1, n , that results in reduction of the number of 
processes in the multiprocessor system is called a lin­
ear grouping and denoted by LCh

Let us denote the set of various groupings of blocks 
in the system of identically distributed processes com­
peting for the use of the program resource PR by K,
and the set of groupings of rank /, / =  1 ,n  by K,. Note 
that the grouping of rank n is the initial identically dis­
tributed system LC„ =  (qh q2, q n), while the grouping 
of rank 1 is the grouping of blocks into a single program 
block LCX =  (qx vj q2 u  ... u  qn). It is easy to calculate

that \K\ = 2 " - ' and \K\ =  d ~  \ = — —  .
1 / 1  n ~ [  ( / - ! ) ! ( « - / ) !

Let LC, =  (<7І , q2, q)) be a linear grouping of
blocks.

We introduce the following notation:

А ч'і ) =  6 . t{<l) is the execution time of the ith

element of the grouping LCh i=  1, / ;

t(LC,) =  (t(q\ ), t{q\ ) , ..., t(q])) is a sequence ofthe 

execution times of blocks q] , i = 1, /;

(raaX(LC,) =  m ax {;(?))} is the execution time of
1 £ I S /

the greatest block of the grouping LC,\ and
m̂in mm{tmw{lC,)\LCi e  K,}.

The problem o f optimal grouping of blocks (qx, q2,
..., q„) of a set o f identically distributed competing pro­
cesses consists in finding a linear grouping LCl of an 
initial identically distributed system for given p > 2 ,n > 2 ,  
s> 2, and s > 0 on which the minima of functionals (1) 
and (2) are attained. Such a grouping is said to be opti­
mal.

3. FEATURES OF OPTIM AL GROUPINGS 
AND AUXILIARY RESULTS

To solve the posed problem, we need the following 
results.



Theorem 1. If LC, is the optimal linear grouping of 
an identically distributed system, then the grouping 
LC) such that tmm{LC)) =  tmin is optimal as well.

Proof. It follows from the definition of /min that

^max(-^Q) =  ^шіп- (3 )

Let us show that the grouping LC) is optimal pro­
vided that the theorem assumptions are fulfilled, i.e., 
for given e, p, and s,

T(p,LCh s, e) = T(p,LC),s, e). (4)
When s = p, for the optimal grouping LCh we have 

tmm(LC/) = tmin given. Therefore, the assertion of the 
theorem is valid.

Let s > p, s = kp + r, 1 < r<  p. Let us consider all 
possible cases.

(1) 7  ̂ <p(tmm + 8), Tl < p{tmm(LCj) + 8). Then, 
from (1) and the optimality condition of LC,, it follows 
that

T(p, LC), s, e) -  T(p, LC,, s, e)

= 7  ̂+ (s -  1 )(tmin + e) -  Tt -  (s -  1 )( tmm(LC,) + 8)

=  ( 5 — 1)(^m in  ~  ^ n a x ( ^ Q ) )  —

Since s > 2, from (3), it follows that tm!lx(LC,) = /min, 
and (4) holds.

(2) >p(tmin +  s), > p(tmax(LC,) + 8). From 
(2), it follows that

T(p, LC), s, e) -  T(p, LCh s, e)

= ( * + l )7 :  + ( r - l ) ( ^ n + 8) 

- ( k + l ) r t - ( r - \ ) ( t mi%(LC,) + E)

Hence, by virtue of (3), (4) is valid.

(3) 7  ̂ >p(tmin + e)TnE < p(/max(ZC,) +  e). Then,

T{p, LC), s, s) -  Tip, LC,, s, e)

= (k+  \)T l  + i r -  1 )(?min + s) 

- K - ( s - l ) ( t m a A L C , )  + &)

= ік+\)Ге + ІГ-\)«тіп + Е)

- ikp + r - \ ) i t mmiLC,) + z )

= k T e- k p t ^ i L C , )  + ( r -  l ) ( /min + e)

- ( / • - 1  )( /max(Z,C/) + 8)

= k i ’K-ptrwxiLC,))
+ ( r - W min- t maxiLC ,))> 0 ,

which is possible only for r=  1 and 7  ̂ =pitmaxiLC,) + e). 
Hence, it follows that (4) is valid.

The theorem is proved.

Theorem 2. If tmax{ L C ,) =  ?max(LC, _ ,) for groupings 
L C , and L C , _ ,, / > 2, then

Цр, LC,, s, e) > Tip, LC,_ „ s, e).
From Theorem 1, it follows that, if one can effec­

tively construct a linear grouping LC, of blocks of iden­
tically distributed systems for each rank I =  2, ..., n 
with the least maximum element among groupings of 
this rank itmax(LC,) = tmm), then the original problem 
will be effectively solved, since the optimal grouping in 
this case is to be chosen from in — 1) groupings.

It is also obvious that the least maximum element 
among groupings of rank I does not decrease as / 
decreases, that is,

^min(T-C,) > tminiLC,2), 1 < /| < /2 < и, (5)

which allows one not to  consider grouping into a single 
program block when solving the optimal grouping 
problem.

From the practical standpoint, it is reasonable to 
assume that

8 < t„  i = 1 ,n ,  (6)

which also allows one not to consider grouping into a 
single program block when solving the optimal group­
ing problem.

Along with the original problem, we consider the 
following optimization problem of the linear stowage 
into containers.

Forgiven items of a finite ordered set M =  {mu m2, 
..., m„}, the corresponding sequence of their sizes

t/(»2|), v im 2), ..., vim„), vim,) > 0, / =  1, n , and con­
tainer capacity В > 0, В  max { v im , ) } , it is required to

I < / < П
find a linear stowage of the set M  such that the size of 
each element of the stowage v{Mj) does not exceed В 
and / takes the least value.

In the general case, i.e., when there is no condition 
of stowage linearity, this problem is N P-hard in the
strong sense, since, for vim,) e  (0, 1), i =  1, n , В = 1, 
we have a classical optimization problem of stowage 
into containers. The stowage linearity condition, 
which is related to the problem of optimal grouping 
blocks of identically distributed systems, considerably 
simplifies the solution.

The problem o f the linear stowage into containers 
is effectively solved by the following last-fit (LF) algo­
rithm:

(1) The first item m x is loaded into the first con­
tainer, and the other items are loaded in ascending 
order of their numbers.

(2) The item m,, i = 2 , n  is loaded into the last con­
tainer among the partially packed ones if the number 
of items placed into does not exceed В — m otherwise, 
it is loaded into the next empty container.

Optimality of the linear stowage constructed by the 
LF algorithm is easily proved by reductio ad absur-



dum. The LF algorithm requires no more than 3n ele­
mentary operations and is a part o f the algorithm for 
solving the original problem o f the optimal grouping.

4. OPTIMAL G R O U PIN G  ALGORITHM
LetP„ =  {tx, t2, ..., t„) be a sequence o f times of exe­

cuting each block qh i — 1 ,n  by all л processes, n > 3; 
p > 2 be the number of processors; and e be the time
characterizing system overheads, e < i =  1, n .

The algorithm for constructing the optimal linear 
grouping of blocks consists of the following steps.

1. Construct an array o f — 1 numbers x tj,

i = 2, n , j  =  1, / according to the rule

Xnj — tjl j  —

X « - 1 J  =  X „ j + t J + l , j  =  1 , И  — 1 ,

...........................................................  (7)
x„_kJ = x„_k+Uj + tJ+k, j =  \ , n - k ,

x 2j = x v  + tJ+n_2, у = 1 ,2 .

Here, the numbers x tj — tj + tJ+l + ... + tj + n_i are 
the periods of all possible linear groupings of blocks.

2. Sort Xy in the ascending order, simultaneously 
removing redundant identical elements and elements 
x, < max { /,} , to obtain an ascending sequence v, <

I <.j<,n
v2 < ... < vk for which v, < max {/■} , n — 1 < к  <

lS/Sn
»(« + !) _ i

2
3. Set Тй =  Tip, n, s, e), P0 =  Pn, /„ =  « , / =  1.

4. Taking the capacity В equal to v„ i=  1 , k , apply 
the LF algorithm to the original set of identically dis­
tributed competing processes. Let /, be the rank of the 
obtained block grouping (qb q2, ..., q„).

5. If /,■ =  /,_i, the obtained grouping LG, is not taken 
into consideration. Calculate i =  / + 1 and go to Step 4.

6. Calculate 7} =  Tip, LCt , s, в). If  Tt < T0, set T0 = Tb 

P0 =  P ,{ L C ); otherwise, T0 and PQ are not changed.

7. If /, > 2, calculate i =  i +  1 and go to Step 4; oth­
erwise, /,■ =  2. Stop.

After the completion of the algorithm, T0 is equal 
to the minimum of functional (1), (2), and P0 is the 
optimal grouping. Correctness of the algorithm fol­
lows from Theorems 1 and 2 and relations (4) and (5).

The above-described algorithm requires no more 
than 0{пъ) elementary operations, with the first stage

j

1 '"■т: 3 5 7 8
- 2 Ъ1 35

3 32 32 33

4 30 27 30 23

5 25 25 25 20 20

6 20 20 23 15 17 15

7 17 15 18 13 12 12 10

S 5 12 13 Ш і 10 7 7 8

9 5 2 10 3 Ш іі 5 2 5 3

Fig. 3.

involving Oin2) elementary operations to construct the 
array afxy,  i =  2, n J  = 1, i , the second stage involving 
rapid sorting algorithms and 0 (« 2log2n) operations, 
and the fourth stage involving at most 0{пу) operations 
in v,- cycle.

Example. Let P9 = (5, 2, 10, 3, 5, 5, 2, 5, 3) be the

sequence of execution times of blocks qh i =  1, 9 ; p = 3 
be the number of processors; s = 5 be the number of 
blocks of a linearly structured program resource; and 
e =  1 be system overheads on each block associated 
with the structuring and pipelining. 1

Since 5 = s> p  = 3 and the overall time of execution 
of each block Q, by all n processes with regard to over­
heads £ is given by

"K = = Х // + Л£
i=i i=i

= 40 + 9 = 49 > p t lax = 3 (1 0 + 1 ) = 33,

the overall execution time of n =  9 identically distrib­
uted processes that use the PR  program resource struc­
tured into 5 = 5  blocks in the computing environment 
with p  =  3 processors for asynchronous mode and the 
mode of continuous executing each block by all the 
processors according to formula (2) adds up to

T { \  9, 5 ,1 ) = (Л + 1 )7 : + ( г - 1 ) 4 в
= 2 • 49 + 1 • 11 = 109 time units.

Let us find the linear grouping LC, of the initial 
identically distributed system on which the minimum 
of functionals (1), (2) is attained using the above­
described algorithm.



Table

В Ч Щ ) h Tip, L C lt, s, e)

10 7, 1 0 ,8 ,7 ,8 5 7  ̂ =  40 +  5 =  45 > 33 =  3(10 +  1) =  p t\0 , then

TO, 5, 5, 1) =  (1 +  1)7^ +  (2 -  1 ) 4  =  2 x 45 + 1 x 11 =  101

12 7, 10,8 , 12,3 5 -

13 7, 13, 12, 8 4 =  40 + 4 =  44 > 42 =  3(13 +  1) =  pt'n , then 

T(3, 4, 5, 1) =  (1 +  1)7^ +  (2 -  l)r |3 =  2 x 44 + 1 x 14 =  102

15 7, 13, 12, 8 4 -

17 17, 15,8 3 = 40 + 3 =  43 > 54 =  3(17 + 1) =  pt'n , then 

T(3, 3, 5, l)  =  rj +  ( 5 -  l)/}7 =  43 +  4 x  18 =  115

20 20, 17,3 3 -

23 20, 17, 3 3 -

25 25, 15 2 f i =  40 + 2 =  42 > 78 =  3(25 + 1) =  pt'25, then 

T{3, 2, 5, 1) =  Т\ +  (5 -  1 ) 4  =  42 +  4 x 26 =  146

We construct the array of ^  — 1 =  44 num ­

bers of Xp i=  2, 9 ,y =  1 ,/ according to rule (7). Figure 3 
shows the scheme of generating these numbers, which 
are sums of numbers at the bottom o f the correspond­
ing triangle.

By sorting Xy in the ascending order and removing 
redundant identical elements and elements xs < 10, we 
obtain the following ascending sequence:
(10, 12, 13, 15, 17, 20, 23, 25, 30, 32, 33, 35, 37). (8) 

Assuming that the capacity В  successively takes val­
ues of elements in sequence (8), we apply the LF algo­
rithm to the initial system of identically distributed 
competing processes until it gives the grouping of rank 2. 
Calculations performed at each step are presented in 
the table, where the dashes mean that there is no need 
to calculate the corresponding values o f T(p, 1СЬ s, s).

As can be seen from the table, the optimal grouping 
is given by

LC$ = (Qi и  Q2, Qi, Q4 u  Q$, Q$ vj Qi, Q8 Q9),

for which P,(LC5) =  (7 ,10 ,8 ,7 ,8) and T( 3 ,5 ,5 ,1 ) =  101.
Thus, the overall execution time of the initial iden­

tically distributed system is improved through the opti-
g

mal grouping by 109 — 101 =  8 time units, or by —  x

100% «7.34%.
Correctness of the algorithm operation is sup­

ported by results obtained in [5, 6], where it was shown 
that the optimal identically distributed system is to be

found among stationary identically distributed sys­
tems. The following theorem  is proved.

Theorem. In order that an efficient identically dis­
tributed system of competing processes in the case of 
the limited parallelism in the asynchronous and the 
second synchronous modes be optimal for given p> 2,
T z , e  > 0, it is necessary and sufficient that the system 
is stationary and the number o f processes n0 is equal to 
one of the following numbers:

(1) кг
( P - I ) K

кг
s = k p , k >  1,

(2)
( £ +  1 ) e

( r - l ) K
(k +  1)e

+ 1

+ 1

n  [2, я], for

n  [2, n], for

s = kp + r, k >  1, 1 <r <p ,

where the function Де (x) =  (s — 1) T ^ l  -  — (x + s —

1)e, x  > 1 reaches its maximum, \z] denotes the greatest 
integer not exceeding z, and n is a given number.

For the above example, the number of processes is 

+ 1 =П n =
( r - l ) K
(k + 1 )e

40 + 1 =  [4 ,4 7 ]+  1 = 5 ,

which substantiates the rank o f the optimal grouping 
obtained.
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