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Abstract. Problems of finding minimum total execution times of distributed competing processes are

solved for a limited number of copies of a structured program resource under conditions of unbounded

and bounded parallelism.
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INTRODUCTION

In many applications connected with designing multiprocessor systems (MSs), computer complexes (CCs), system

and applied software [1], and optimal organization of parallel computational processes, of significant interest are problems in

which many competing processes can use not one but several copies of a structured program resource (PR). The case when a

common (shared) memory of a multiprocessor system contains one copy of this PR was investigated from different positions

in [2–8]. In these works, problems of finding the minimum total execution time were solved for distributed competing

processes using a program resource structured into blocks in different interaction modes of processes, processors, and blocks

[2–6], criteria of efficiency and optimality of structurization of program resources [7] are obtained, a comparative analysis of

interaction modes of processes, processors, and blocks [8] is conducted, and a number of optimization problems of

calculating the number of processes, minimum number of processors, etc. were solved. The investigation of these and other

problems specific to the optimal organization of parallel computations becomes especially topical in the case when c � 2

copies of a program resource can be simultaneously placed in the shared memory of an MS. This generalization is of

fundamental importance since it reflects main features of multiconveyor processing and also allows one to compare the

efficiency of conveyor and parallel processing.

The present article constructs and investigates a mathematical model of organization of competing processes using

a limited number of copies of a program resource. Using ideas of the method of block structurization of program resources

with their subsequent conveyorization between processes and processors, optimal time characteristics of this organization are

investigated.

1. MATHEMATICAL MODEL OF DISTRIBUTED COMPUTATIONS FOR THE CASE

WHEN THE NUMBER OF COPIES OF A PROGRAM RESOURCE IS LIMITED

Constructive elements for the construction of mathematical models of systems of distributed computations are the

concepts of a process and a program resource.

A process is understood to be a sequence of blocks (commands or procedures) Q Q Qs
1

2

, ,... , that are executed on

many processors (processor nodes, processing devices, or intelligent clients). A process is called distributed if all its blocks
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or some of them are processed by different processors [2]. To accelerate the execution of processes, computations can be

performed simultaneously and interact to interchange data. Such processes are called cooperative or interacting processes.

The concept of a resource is used to denote any objects of a computing system that can be used by processes for their

execution. Reenterable (reusable) resources can be simultaneously used by several computational processes. For parallel

systems, the situation is typical when the same sequence of blocks or their portion should repeatedly be executed by

processors. We call such a sequence a program resource and the set of corresponding processes competing processes.

When the number of copies of a program resource is limited, the mathematical model of distributed processing of

competing interacting processes includes p, p � 2 , processors of a multiprocessor system that have access to the shared

memory; n, n � 2 , distributed competing processes; s, s � 2 , blocks of the structured program resource; a matrix T t ij� [ ] ,

i n� 1, , j s� 1, , of times of executing blocks of the program resource by distributed interacting competing processes; the

number of copies 2 � �c p of the program resource structured into blocks that are simultaneously available in the main

memory to all p processors,

p

c

�

�
�

�

	



� 2 ; � � 0 is the parameter describing the time of additional system expenditures for the

organization of the conveyor mode of using blocks of the structured program resource by a set of interacting competing

processes in the course of distributed processing.

We also assume that the number of processes n is a multiple of the number of copies ñ of the structured program

resource, i.e., n mc� , m � 2 , and that the interaction of processes, processors, and blocks of the program resource satisfies

the following conditions:

(1) any processor cannot simultaneously process more than one block;

(2) processes are executed by groups in the parallel–conveyor mode, i.e., ñ copies of each block are executed

simultaneously (in parallel) in combination with the conveyorization of groups consisting of ñ blocks between processors

and processes;

(3) each block of the program resource is processed without interruptions;

(4) for each process i lc q� � , i n� 1, , l � 0, q c� 1, , blocks of the program resource are cyclically distributed among

processors according to the following rule: the block with a number j k
p

c
r�

�

�
�

�

	



� , j s� 1, , k � 0, r
p

c
�

�

�
�

�

	



1, , is assigned to the

processor with a number q c r� ( )1 .

We introduce the following interaction modes for processes, processors, and blocks with allowance for the presence

of ñ copies of the program resource:

(1) the asynchronous mode, in which the beginning of the execution of the next group consisting of ñ copies of the jth

block Q j , j s� 1, , is determined by the presence of ñ processors and readiness of this group of blocks for execution

(a program block is considered to be ready for execution if it is not executed on any processor);

(2) the first synchronous mode providing the linear order of executing blocks of the program resource within each

process without delays, i.e., for each process i lc q� � , i n� 1, , l � 0, q c� 1, , the moment of termination of the jth block on the

( ( ))q c r� 1 th processor coincides with the moment of the beginning of executing the next ( )j � 1 th block on the ( )q cr� th

processor, j s� 1 1, , r
p

c
�

�

�
�

�

	



1, ;

(3) the second synchronous mode in which ñ copies of each block are continuously moved between groups consisting

of ñ processes, i.e., the moment of termination of processing ñ copies of the current block coincides with the moment of the

beginning of their processing on the next group consisting of ñ processors.

Figures 1–3 present Gantt charts illustrating the execution of n � 4 distributed competing processes using c � 2 copies

of the structured program resource in an MS with p � 7 processors in the modes considered above with a specified matrix of

execution times for PR blocks with allowance for additional system expenditures T
�

�

�

�

�

�

�

�

�
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1 3 3

4 1 2
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Definition 1. A system consisting of n distributed competing processes is called heterogeneous if execution times of

blocks of the program resource Q Q Qs
1

2

, ,... , depend on amounts of the data being processed and/or on their structure, i.e.,

they are different for different processes.

Definition 2. We call a system of distributed competing processes homogeneous if the times of execution of the Qjth

block by each ith process are equal to one another, i.e., t tij j� , i n� 1, , j s� 1, .

Definition 3. A system of competing processes is understood to be identically distributed if the times t ij of execution

of the jth block Q j , j s� 1, , of the program resource by each ith process coincide and are equal to t i for all i n� 1, , i.e.,

a chain of equalities t t t ti i is i1 2

� � � �� takes place for all i n� 1, .

2. MINIMUM TOTAL EXECUTION TIME OF HETEROGENEOUS DISTRIBUTED

PROCESSES IN THE ASYNCHRONOUS MODE WHEN THE NUMBER

OF PROCESSORS IS SUFFICIENT

We denote by T p n s ñ
het

às

( , , , ) the minimum total time of execution of n heterogeneous distributed competing processes

when the number c of copies of the program resource is limited in a multiprocessor system with p processors in the

asynchronous mode with allowance for a parameter �. To compute T p n s c
het

às

( , , , ) , we consider the cases of unbounded

( )s
p

c
�

�

�
�

�

	



and bounded ( )s
p

c
�

�

�
�

�

	



parallelism.
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Fig. 1. Diagram of the asynchronous mode.
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Fig. 2. Diagram of the first synchronous mode.
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Fig. 3. Diagram of the second synchronous mode.
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Let there be a system n mc� , m � 2 , 2 � �c p, of heterogeneous distributed competing processes, and let the number

of blocks s of a structured program resource do not exceed the number of processor groups each of which consists of c

processors, i.e., 2 � �
�

�
�

�

	



s
p

c
. In this case, without any loss of generality, we can consider that each Q j th block, j s� 1, , of the

ith process, where i lc q� � , i n� 1, , l � 0, q c� 1, , is assigned to the ( ( ))q c r� 1 th processor, r
p

c
�

�

�
�

�

	



1, . Then, to execute n

processes, it suffices to use p
p

c
s�

�

�
�

�

	



processors, and the other p
p

c
s

�

�
�

�

	



processors will be idle.

Let T t ij

� �
� [ ] be an n s� matrix of execution times of blocks of the program resource by each ith process with

allowance for the parameter � � 0, where t tij ij

�
�� � , i n� 1, , j s� 1, . To compute the minimum total time T p n s c

het

às

( , , , ) , the

functional of the Bellman–Johnson problem can be used that, in this case, assumes the form

T p n s c
h

às

( , , , ) � �

� � � � �
� 

�

� 


�max

( ) , ( ) ,

1

1 1

1

1 2

1 2 1

1

u u u m
q i c

i

u

q i c
s

t t
�

� � �

i u

u

q i c s

i u

m

t

s�

� 

�

� �� �

�

�

�

�

�

	






1

2

1

1

�

( ) ,

,

(1)

where m
n

c
� , t t

q i c j q i c j�  � 
� �

( ) ,

( ) ,

1

1

�
�, q c� 1, , i m� 1, , j s� 1, , and u u us1 2 1

, ,... ,


are integers.

Example 1. We illustrate an interpretation of formula (1) by a numerical example. Assume that p � 7, n � 6 , s � 3, and

c � 2 and that times of execution of blocks by processes are specified by the matrix T
�

�

�

�

�

�

�

�

�

�

�

�
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. Then m � 3 and, hence,

functional (1) assumes the form

T p n s c
het

às

( , , , )� � � �7 6 3 2

� �

� � �
� 

�

� 

�

�max

( ) , ( ) ,

1 3

1 2 1

1

1 2 2

1 2

1

1

2

u u
q i

i

u

q i

i u

u

t t
� �

� ��

�

�

�

�

�

	






� 

�

t
q i

i u

( ) ,1 2 3

3

2

�
, q � 1 2, .

When q � 1, we have

max

( ) , ( ) ,

1 3

1 2 1

1

1 2 2

1 2

1

1

2

� � �
� 

�

� 

�

� ��

u u
q i

i

u

q i

i u

u

t t
� �

�

�

�

�

�

�

	






� 

�

� t
q i

i u

( ) ,1 2 3

3

2

�
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�



�

� �max

, , ,

1 3

2 1 1

1

2 1 2 2 1

1 2

1

1

2

u u
i

i

u

i

i u

u

i
t t t

� �

3

3

2

�

i u�

�

�

�

�

�

�

	







.

If u
1

1� , then u
2

1 3� , ; if u
1

2� , then u
2

2 3� , ; if u
1

3� , then u
2

3� . Then we have

max

, , ,

1 3

2 1 1

1

2 1 2 2 1 3

1 2

1

1

2

� � �


�



�

� �� �

u u
i

i

u

i

i u

u

i
t t t
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i u�

�

�

�

�

�

�

	






2

3

�

� �


�



�



�

� � �

max

,

, , ,

t t t t
i

i

i

i

i

i

i2 1 1

1

1

2 1 2

1

1

2 1 3

1

3

2

� � �

1 1

1

1

2 1 2

1

2

2 1 3

2

3

2 1 1

1

1

, , ,

,

,
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�

i

i

i

i

i

i

i

t t

t

�



�



�



�

� � �� �
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�



�



�


t t t t

i

i

i

i

i

i

i2 1 2

1

3

2 1 3

3

3

2 1 1

1

2

2 1, , , ,

,

� � �

2

2

2

2 1 3

2

3

2 1 1

1

2

2 1 2

2

3

� �

� �

i

i

i

i

i

i

i

t

t t
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�

� �

� �

�
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,

, ,

,

t t t t
i

i

i

i

i

i

i2 1 3

3

3

2 1 1

1

3
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3

2
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�

� � � � � �

max

,

, , , , , , , ,

t t t t t t t t
1 1 1 2 1 3 3 3 5 3 1 1 1 2 3 2

� � � � � � � � � �

� � � � � �

� �

� � � � �

t t

t t t t t t

3 3 5 3

1 1 1 2 3 2 5 2 5 3 1 1

, ,

, , , , , ,

,

, t t t t

t t t t t

3 1 3 2 3 3 5 3

1 1 3 1 3 2 5 2 5

, , , ,

, , , ,

,

� � � �

� � � �

� � �

� � � �
, , , , , ,

,

3 1 1 3 1 5 1 5 2 5 3

� � � � � �
t t t t t� � � �

�

�

�

�

�

�

�

�

	
















�

� � � � � � � �

� � � � � � � �
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, ,

, ,

3 1 4 3 1 3 1 3 3 1

3 1 3 2 1 3 1 3 3 1

3 1 3 2 1 3 1 3 2 1� � � � �

�

�

�

�

�

�

	










�

,

max[ , , , , , ]12 11 10 11 10 10 12� .

When q � 2 , we have
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If u
1

1� , then u
2

1 3� , ; if u
1
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2

2 3� , ; if u
1

3� , then u
2

3� . Then we obtain
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, , , , , ,
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, ,

, ,
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2 2 1 4 1 2 4 1 2 1

2 4 1 4 1 2 4 1 4 1� � � � �

�

�

�

�

�
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�

,

max[ , , , , , ]8 8 10 10 12 12 12� .

(Underlined sums denote maximum execution times.)

Hence, the minimum total execution time n � 6 for heterogeneous distributed interacting competing processes using

c � 2 copies of the program resource structured into s � 3 blocks in a multiprocessor system with p � 7 processors in the

asynchronous mode amounts to T p n s ñ
het

às

( , , , ) � 12 . In this case, six processors will be used.

Let us consider an algorithm that makes it possible to more efficiently solve the problem of finding the minimum total

time T p n s ñ
het

às

( , , , ) of execution of heterogeneous distributed competing processes in the asynchronous mode.
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From given s c, , m
n

c
� , and a matrix T t

q i c j

� �
�

� 
[ ]

( ) ,1

, q c� 1, , i m� 1, , j s� 1, , we construct a c-layer vertex–weighted

graph G
c

1

. Each qth, q c� 1, , layer of the graph G
c

1

consists of vertices t
q i c j� ( ) ,1

�
, i m� 1, , j s� 1, , that are located at nodes of

a rectangular m s� -lattice in which t
q1

�
are input vertices and t q t s� ,

�
are output vertices, q c� 1, , t m c� ( )1 (Fig. 4). In each

layer q, arcs reflect the linear order of execution of blocks Q j , j s� 1, , of the program resource by each ( ( ) )q i c� 1 th

process, q c� 1, , i m� 1, , and also the linear order of using each block by all m processes. Thus, the following theorem takes

place.

THEOREM 1. The minimum total execution time n mc� , m � 2 , of heterogeneous distributed competing processes

using 2 � �c p copies of the program resource structured into 2 � �
�

�
�

�

	



s
p

c
blocks with execution times of blocks taking into

account system expenditures [ ]t ij

�
, i n� 1, , j s� 1, , in a multiprocessor system with p,

p

c

�

�
�

�

	



� 2 , processors in the

asynchronous mode is determined by the length of the critical path in a c-layer vertex–weighted graph G
c

1

from the initial

vertex t
q1

�
to the terminal vertex t

q m c s� ( ) ,1

�
, q c� 1, , m

n

c
� .

Example 2. Using the data from Example 1, find the minimum total time T p n s c
het

às

( , , , ) using an algorithm for

finding the critical path in the c-layer vertex–weighted graph G
c

1

.
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From given n � 6, s � 3, and a matrix T
�
, we construct a 2-layer (c � 2 ) vertex–weighted graph G

c

1

(Fig. 5). Each layer

contains ms vertices, where m n c� �/ 3. The length of the critical path in the graph is equal to 12, which coincides with the

minimum total time obtained in Example 1.

3. ASYNCHRONOUS MODE OF EXECUTION OF DISTRIBUTED COMPETING

PROCESSES UNDER CONDITIONS OF BOUNDED PARALLELISM

Let us consider the case of bounded parallelism i.e., when the number of blocks of a structured program resource is

greater than the number of groups consisting of ñ processors, i.e., s
p

c
�

�

�
�

�

	



, s k
p

c
r�

�

�
�

�

	



� , k � 1, 1� �
�

�
�

�

	



r
p

c
.

As in the case when the shared memory of an MS consists of one copy of the program resource, we divide the set

consisting of s blocks into ( )k � 1 groups each of which consists of

p

c

�

�
�

�

	



blocks except for the ( )k � 1 th group that contains r

blocks [6]. Then we divide the matrix T t ij

� �
� [ ] , i n� 1, , j k

p

c
r�

�

�
�

�

	



�
�

�

�
�

�

�

�
�

1, , of execution times of blocks into ( )k � 1

submatrices T
l

�
, l k� �1 1, , of size n

p

c
�

�

�
�

�

	



except for the last T
k�1

�
that, when s is not a multiple of

p

c

�

�
�

�

	



, will contain only r

columns, and the other

p

c
r

�

�
�

�

	



 columns will be zero. From each submatrix T
l

�
, l k� �1 1, , we construct the ( )k � 1 th linear

Gantt chart each of which reflects (in time) the execution of the next

p

c

�

�
�

�

	



blocks of the structured program resource on

ð
p

c

�

�
�

�

	



processors by all n processes using a bounded number ñ of copies of the structured program resource. When r � 0 , the

( )k � 1 th diagram reflects the execution of the last r blocks on cr processors. Figure 6 presents the Gantt chart for an MS with

the parameters p � 7, n � 4, s � 3, c � 2 , and T
�

�

�

�

�

�

�

�

�

	













3 1 4 2 1 4 2 1

2 2 1 1 3 3 2 2

1 3 3 1 1 3 3 1

4 1 2 3 1 1 2 5

.

In this case, the total execution time of all processes using ñ PR copies is found as the sum of lengths of critical paths

in each of successive nonoverlapped Gantt charts. However, this time can be reduced if these Gantt charts are successively

and maximally superposed block-by-block beginning with the second diagram along the time axis from right to left without

violating technological conditions of the asynchronous mode. As a result of overlapping, the resulting overlapped Gantt

chart is obtained (Fig. 7).
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As is shown in [6], the obtained structure of the resulting overlapped Gantt chart is specified by the matrix T
*

that is

presented below and consists of submatrices T T T
k1 2 1

� � �
, ,... ,

�
. The matrix T

*

takes into account all vertical and horizontal

connections between blocks and also connections between blocks from different Gantt charts. We also note that the

following resulting matrix T
*

has size ( ) ( )k n k
p

c
� � �

�

�
�

�

	



1 1 and is considered to be a block, symmetric, upper diagonal with

respect to the second diagonal, and Hankel-type matrix of order k � 1:

T
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k k
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, (2)

where the submatrices T
l

�
and T

k�1

�
are of the form

93

220

1

2

3

4

5

6

Fig. 7. Overlapped Gantt chart.

T p n s c
het

às

( , , , )

t
26

t
46

t
33

t
25

t
45

t
15

t
24

t
44

t
34

t
14

p

t
36

t
35

t
23

t
43

t
22

t
42

t
12

t
21

t
41

t
31

t
11

t
13

t
32

t
16

t
48

t
28

t
18

t
38

t
27

t
47

t
37

t
17

11 21

30

0

1

2

3

4

5

6

Fig. 6. Nonoverlapped Gantt chart.

T p n s c
het

às

( , , , )

ð

t
26

t
46

t
33

t
25

t
45

t
15

t
24

t
44

t
34

t
14

t
36

t
35

t
23

t
43

t
22

t
42

t
12

t
21

t
41

t
31

t
11

t
13

t
32

t
16

t
48

t
28

t
18

t
38

t
27

t
47

t
37

t
17



T

t t t

l

l
p

c
l

p

c
l

p

c

�

� �

�


�

�
�

�

	


� 

�

�
�

�

	


�

�
1 1 1 1 1 2 1,( ) ,( ) ,

�

�
�

�

	




�

�
�

�

	


� 

�

�
�

�

	


�

�

� �
t t t

l
p

c
l

p

c
l

p
2 1 1 2 1 2 2,( ) ,( ) ,

�

c

n l
p

c
n l

p

c

t t

�

�
�

�

	




�

�
�

�

	


� 

�

�
�

�

	


�

�

��

� � � �

,( ) ,( )1 1 1 2

� t
n l

p

c
,

�

�
�

�

	



�

�

�

�

�

�

�

�

�

�

	






















�

, l k� 1, ,

T

t t t

k

k
p

c
k

p

c
k

p

c

�
�

�

�
�

�

	



�
�

�
�

�

	



�
�

�
�

�

	



�

1

1 1 1 2 1

�

� �

, , ,

�

r

k
p

c
k

p

c
k

p

c
r

t t t

�

� �

0 0

2 1 2 2 2

�

�

, , ,

�

�
�

�

	



�
�

�
�

�

	



�
�

�
�

�

	



�

�

��

0 0

1 2

�

� � � � � � �

�t t t
n k

p

c
n k

p

c
n k

p

c
, , ,

�

�
�

�

	



�
�

�
�

�

	



�
�

�
�

�

	



�

�

�

�

�

�

�

�

�

�

�

	





















r

�
0 0�

.

With the help of the matrix T
*

, we construct a c-layer vertex–weighted graph G
c

2

similar to the graph G
c

1

. Weights

t
q i c j� ( ) ,1

�
, q c� 1, , i k m� �1 1, ( ) , j s� 1, , will be assigned to vertices of each layer q of size ( ) ( )k m k

p

c
� � �

�

�
�

�

	



1 1 in the graph

G
c

2

. Here, t
q1

�
and t

q k m c s� � (( ) ) ,1 1

�
are input and output vertices, q c� 1, . The following theorem takes place.

THEOREM 2. The minimum total time T p n s c
het

às

( , , , ) of execution of n, n � 2 , heterogeneous distributed competing

processes using the program resource linearly structured into s, s � 2 , blocks with execution times of blocks taking into

account additional system expenditures � � 0 specified by a matrix T t ij

� �
� [ ] , i n� 1, , j s� 1, , in a multiprocessor system with

p, p � 2 , processors and c � 2 copies of the structured program resource ( )

p

c

�

�
�

�

	



� 2 in the asynchronous mode in the case of

unbounded parallelism ( )s
p

c
�

�

�
�

�

	



is determined by the length of the critical path from the initial vertex t
q1

�
to the terminal

vertex t
q k m c s� � (( ) ) ,1 1

�
, q c� 1, , of the graph G

c

2

.

Example 3. Using the parameter values of the Gantt chart presented in Fig. 6, find the minimum total time

T p n s c
h

às

( , , , ) with the help of an algorithm for finding the critical path in the c-layer vertex–weighted graph G
c

2

.

Since

p

c

�

�
�

�

	



� 3, we have 8 2 3 2� �
�

�
�

�

	



� � � �s k
p

c
r and, hence, k � 2 and r � 2. We divide the matrix T

�
into

submatrices T
l

�
, l � 1 3, , of size 4 3� . The matrix T

*

has the size ( )k n� �1 ( )k
p

c
�

�

�
�

�

	



�1 12 9� and is as follows:
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From the matrix T
*

, we construct the 2-layer vertex–weighted graph G
c

2

(Fig. 8). The critical path length equals 22.

4. EXECUTION TIMES OF HOMOGENEOUS AND IDENTICALLY DISTRIBUTED

COMPETING PROCESSES

According to Definition 2, a system of distributed competing processes is considered to be homogeneous if the times

of execution of each block Q j , j s� 1, , by each process are the same, i.e., t tij j

� �
� , i n� 1, , j s� 1, .

Figure 9 presents the Gantt chart illustrating the execution of homogeneous distributed competing processes when the

number of copies of the program resource is limited on an MS with the following parameters: p � 7, n � 4, s � 3, c � 2 , and

T
�

�

�

�

�

�

�

�

�

	













3 1 4

3 1 4

3 1 4

3 1 4

.

Let us estimate the total execution time of n homogeneous distributed competing processes using ñ copies of the

structured program resource in the asynchronous mode. Let ( , ,... , )t t t s
1 2

� � �
be the duration of execution of each block Q j ,

j s� 1, , of the program resource with allowance for overheads �, t tj j

�
�� � , j s� 1, . We denote by T t

s

j

s

j

s

�
�

�

�
1

the duration of

execution of the entire program resource by each process. Let us show that, under such conditions, the computation of the

total time T p n s ñ
hîm

às

( , , , ) in the case of unbounded parallelism is reduced to the finding of the total execution time of

homogeneous distributed processes for one copy of the structured program resource. When n mc� , m � 2 , 2 � �c p, the

execution of ñ copies of the structured program resource in the asynchronous mode is equivalent to the execution of ñ groups

each of which consists of m processes competing for the use of one copy of the program resource on

p

c

�

�
�

�

	



processors.

Based on the formula [6] for the computation of the total time of execution of n homogeneous competing processes

using one copy of the structured program resource and taking into account that n mc� , m � 2 , 2 � �c p, we obtain

T p mc s c T
p

c
m s T

s

hom

às

hom

às

( , , , ) , , ,�
�

�
�

�

	



�

�

�
�

�

�

�
�

� �1

�
( ) maxm t

j s
j

� �

1

1

�
. (3)
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To prove formula (3), we use functional (1) of the Bellman–Johnson problem; for systems of homogeneous

competing processes, this functional assume the form

T p n s c t t
u u u m

i

u

is

hom

às

( , , , ) max� �

� � � � �
� �

�
1

1

1

2

1 2 1

1

�

� �

u

u

s

i u

m

j

j

s

j s

t t m

s1

2

1

1

1

1� � �� �

�

�

�

�

�

	







� � 

� �
� �



�

� �
( ) max t j

�
,

where m
n

c
� , t tj j

�
�� � , j s� 1, , and u u us1 2 1

, ,... ,


are integers.

In the case when s
p

c
�

�

�
�

�

	



and s k
p

c
�

�

�
�

�

	



, k � 1, the matrix of execution times for blocks of the program resource is

constructed by analogy with the matrix T
*

. A difference is that, in each submatrix T
l

�
, l k� 1, , of the matrix T

*

, all rows

coincide. Then, by analogy with Theorem 2, the total time T p n s c
hom

às

( , , , ) of execution of n distributed homogeneous

competing processes when the number of copies of the program resource is limited is determined by the length of the critical

path from the initial vertex to the terminal vertex of the corresponding network graph.

If s
p

c
�

�

�
�

�

	



, s k
p

c
r�

�

�
�

�

	



� , k � 1, 1� �
�

�
�

�

	



r
p

c
, then the last submatrix T

k�1

�
of the matrix T

*

contains

p

c
r

�

�
�

�

	



 zero

columns.

Definition 4. A homogeneous structurization of the program resource into s blocks with execution times

( , , , )t t t s
1 2

� � �
� , t Tj

s

j

s
s

�

� �

1

�
, is called uniform if t t t ts

1 2

� � � �
� � � �� .

CONSEQUENCE. In the case of uniform structurization, the following formulas are used for computing the

minimum total execution time of distributed competing processes when the number of copies of the program product is

limited:

T p n s c

m s t
p

c
m s

km
p

c
p

às
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( , , , )
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c
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� � � �1 1 1) , min , , , ,

�
{ }

c

�

�
�
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�

�
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�

�

�

�

�

� .

Let us consider a system of identically distributed competing processes. With allowance for overheads � for each ith

process, the execution times of all blocks of the system being considered coincide and are equal to t i

�
, i.e., the following

chain of equalities takes place: t t
i i1 2

� �
� ��� �t is

�
� t i

�
for all i n� 1, .
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Fig. 9. Gantt chart of the asynchronous mode

(homogeneous processes).
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Figure 10 presents the Gantt chart illustrating the execution of identically distributed competing processes in an MS

with the parameters p � 7, n � 4, s � 3, c � 2 , and T
�

�

�

�

�

�

�

�

�
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4 4 4
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in the case of unbounded ( )s
p

c
�

�

�
�

�

	



parallelism.

We denote by T t
q

q i c

i

m

�

�
�

� 

�

�
( )1

1

the total time of execution of each block Q j , j s� 1, , by all m processes from the qth

group and by t t
q

i m
q i cmax

( )

max�

� �
� 

1

1

�
the maximum execution time for a block from this group, q c� 1, . The following

theorem is true.

THEOREM 3. The minimum total time of execution of n, n � 2 , identically distributed competing processes using

the program resource structured into s, s � 2 , blocks on a multiprocessor system with p, p � 2 , processors in the

asynchronous mode when the number of copies of the program resource is limited amounts to T p n s c
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To prove the theorem, we first consider the case when s
p

c
�

�

�
�
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or when s
p

c
�
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�

	



but, at the same time, T
p

c
t

q q

�
�

�

�
�

�

	

 max

.

We take advantage of functional (1) of the Bellman–Johnson problem, which assumes the following form for systems of

identically distributed competing processes:
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,

where m n c� / , t t
q i c q i c�  � 

� �
( )

( )

1

1

�
�, q c� 1, , i m� 1, , and u u us1 2 1

, ,... ,


are integers.
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Fig. 10. Gantt chart of the asynchronous mode

(identically distributed processes).
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Next, let us consider the case when s k
p

c
�

�

�
�

�

	



, k � 1, and T
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c
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q q

�
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 max

. In this case, the computation of the total

time T p n s c
id

às

( , , , ) with the help of the functional of the Bellman–Johnson problem leads to the formula
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Here, t t
q i c km q i c�  � � 

�
( ) ( )1 1

� �
, q c� 1, , i m� 1, .

In the case when s k
p

c
r�

�

�
�

�

	



� , k � 1, 1� �
�

�
�

�

	



r
p

c
, and T

p

c
t

q q

�
�

�

�
�

�

	

 max

, the computation of the total time with the help

of the functional of the Bellman–Johnson problem leads to the third formula for the computation of the total execution time

of identically distributed competing processes when the number of copies of the program resource is limited.

CONCLUSIONS

The considered generalization of the mathematical model with one structured program resource (a conveyor) to the

case of a limited number of program resources allows one to establish interrelations between multiconveyor processing and

similar processing on one program conveyor. At the same time, analytical estimates of the total execution time can be

obtained for competing processes under conditions of bounded parallelism, a mathematical investigation of the efficiency

and optimality of the multiconveyor organization of competing processes can be carried out, potentialities of increasing the

acceleration of computations can be determined, and a comparative analysis of different processing modes can be performed.
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