УДК 628.3:621.3

ИССЛЕДОВАНИЕ ВОЗДЕЙСТВИЯ ПЕРЕКИСИ ВОДОРОДА НА АКТИВНЫЙ ИЛ ОЧИСТНЫХ СООРУЖЕНИЙ ПРИ РАЗЛИЧНЫХ КОНЦЕНТРАЦИЯХ СЕРОСОДЕРЖАЩИХ ТОКСИКАНТОВ

В.Н. Штепа, А.Б. Шикунец

Полесский государственный университет

Аннотация. Оценена опасность наличия серосодержащих токсикантов в сточных водах на работу биологических очистных сооружений. Проведены эксперименты касательно воздействия перекиси водорода на активный ил при различных концентрациях соединений серы. Предложено использование в схемах биологических систем очистки сточных вод AOPs технологий.

Ключевые слова: Токсикант, соединения серы, перекись водорода, активный ил.

При поступлении в аэротенки сульфид-ионов в количествах свыше 10 мг/л иловой смеси происходит критическое снижение общей численности индикаторных групп микроорганизмов биологических очистных сооружений (ОС) [1]. В активном иле (АИ) остаются только особи, являющиеся факультативными анаэробами, так как сульфиды в такой системе не только проявляют токсическое действие на клетки, но и являются активным потребителем растворенного кислорода. Поэтому появляются виды-анаэробы, устойчивые к недостатку кислорода и токсическому воздействию сульфидов, то есть снижается индекс сапробности и аэробная очистка работает менее эффективно. Поэтому в соответствии с правилами приема производственных сточных вод в системы канализации населенных пунктов, предельно допустимая концентрация сероводорода в сточных водах, направляемых на биологическую очистку, не должна превышать 1 мг/л [2].

Первичный этап исследований [3] проходил при суммарной концентрации сульфид-ионов и сероводорода меньше 1,0 мг/л. В АИ очистных сооружений вносились три дозы H_2O_2 (концентрация 3%): 0,5 мл/л; 1,0 мл/л; 1,5 мл/л. Сравнение концентрации растворённого кислорода в водном растворе АИ выполнялись через промежутки равные 2 часам (рис. 1).

Влияние различных токсикантов приводит к нарушению процесса хлопьеобразования, а также к деструкции флокул, которые уже сформированы [1]. Это влечет за собой увеличение количества мелкодисперсной взвешенной фракции и соответственно к снижению прозрачности надиловой воды. Степень биологической очистки является удовлетворительной, если прозрачность воды составляет не менее 12 см. В случае наших исследований она первично (в исходном АИ) составила 8 см, при внесении различных доз перекиси водорода она снижалась. Другие показатели, в частности концентрация аммонийного азота и фосфора, не значительно колебались от показателей исходного АИ.

После 6 часов со времени начала проведения экспериментов выполнялся анализ видового состава АИ (табл. 1). Полученные результаты (см. рис. и табл. 1) позволяют сформулировать следующие выводы про условно штатные режимы работы системы биологической очистки сточных вод (концентрация серосодержащего токсиканта менее 1 мг/л):

- в целом исходный активный ил функционирующих очистных сооружений (без внесения дополнительного окислителя H_2O_2) более соответствует технологических задачам очистки сточных вод по показателям «Концентрация растворённого кислорода», «Прозрачность», «Концентрация фосфора», «Концентрация азота аммонийного», видовой состав;
- внесение дополнительного окислителя H_2O_2 негативно влияет на AИ по показателям «Концентрация растворённого кислорода», «Прозрачность», «Концентрация фосфора», «Концентрация азота аммонийного», видовой состав.

Вторичный этап исследований проходил при суммарной концентрации сульфид-ионов и сероводорода больше $1,0\,$ мг/л, поскольку на вход функционирующих очистных сооружений через определённый период времени начали поступать сточные воды с недопустимо-высокой концентрацией восстановленных соединений серы (суммарная концентрация сульфид-ионов и сероводорода $1,38-2,8\,$ мг/л) — как результат началось вспухание АИ, снижение концентрации растворённого кислорода в водном растворе, значительное уменьшение прозрачности водяного столпа над илом.

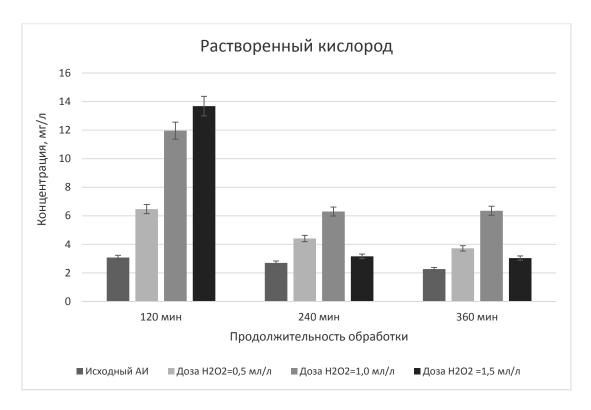


Рисунок – Концентрация растворённого кислорода в активном иле очистных сооружений до и после внесения в активный ил различных доз перекиси водорода (3%-концентрация)

Таблица 1. – Видовой состав АИ до и после внесения H_2O_2 (концентрация 3%)

Обр	аботка активного перекисью водовода (3%-концентрация)		
Доза внесения перекиси водовода (3%-концентрация)	Видовой состав после внесения перекиси водовода (3%-концентрация)	Видовой состав активного ила	
1	2	3	
0,5	Нитчатые; Opercularia sp; Vorticella; Aspidisca; Carchesium (единично); Цисты раковиных амеб Комментарий эксперта: В иле в основном присутствуют Vorticella, прикрепленные колониальные. Наблюдаются бродяжки. Присутствуют цисты простейших. Хлопок умеренной величины, тёмнобурого цвета	Нитчатые; Carchesium; Opercularia Sp; Vorticella(разнообразные); Pamphagus; Aspidisca; Цисты раковиных амеб; отсутствуют коловратки. Комментарий эксперта: Наблюдается достаточно большое количество прикрепленных инфузорий, одиночных форм и колониальных. Активность прикрепленных удовлетворительная. Количество бактерий не связанных с активным илом умеренное, единично появились брюхоресничные инфузории. Хлопок ила умеренной величины	
1,0	Нитчатые; Opercularia; Vorticella; Carchesium. Комментарий эксперта: Хлопок ила более мелкий, количество прикрепленных уменьшилось, преобладают одиночные прикрепленные (vorticella) кувшинообразной формы, прикрепленные инфузории более мелкие. Уменьшилось количество нитчатых бактерий не связанных с хлопьями активного ила.	Нитчатые; Euglypha; Opercularia (с замкнутым ресничным диском); Oligohymenophora; крупная, свободно плавающая инфузория; Vorticella; Carchesium (колониальная инфузория); Opercularia coarctata. Комментарий эксперта: Хлопок ила умеренной величины, пронизан множеством мелких нитчатых бактерий. Малое разнобразие простейших по видам. В иле преобладают прикрепленные инфузории.	

1	2	3		
1,5	Мелкие нитчатые; Carchesium; Opercularia;	Мелкие нитчатые; Archesium; Opercularia;		
	Vorticella; Раковинные корненожки; Равноресничные инфузории.	Vorticella; Раковинные корненожки; Равноресничные инфузории.		
	Комментарий эксперта:	Комментарий эксперта:		
	Прикрепленные встречаются в угнетенном со-	Хлопок ила умеренной величины,		
	стоянии, встречаются цисты простейших. Об-	наблюдается разнообразие прикрепленных		
	щее количество уменьшилось, хлопок более	инфузорий как одиночных так и колониаль-		
	раздробленный. Вода над илом имеет неоседа-	ных форм. В основном умеренно активны, но		
	ющую муть.	также есть и с закрытым ресничным диском.		
		Появились равноресничные инфузории. Коли-		
		чество свободно плавающих бактерий умень-		
		шилось.		

В тоже время внесение дополнительного окислителя H_2O_2 оперативно стабилизировало критическую технологическую ситуацию (табл. 2).

Таблица 2. – Состояния АИ при повышенных концентрациях восстановленных соединений серы и при внесении дополнительного окислителя H₂O₂ (3%-концентрация)

Суммарная концентрация	Без внесения перекиси водорода		После внесения дозы 1 мл/л переки- си водовода (3%-концентрация)	
сульфид-ионов и сероводорода	Прозрачность, см	Концентрация растворённого кислорода, мг/л	Прозрачность, см	Концентрация растворённого кислорода, мг/л
2,8	0,7	1,3	6,8	2,3
1,36	1,1	1,5	5,1	3,4
2,06	0,9	1,1	7,1	2,5

Полученные результаты (см. табл. 2) демонстрируют позитивный технологический эффект от использования подходов AOPs (Advanced Oxidation Processes) при биологической водоочистке в случаи наличия в сточных водах серосодержащих токсикантов – вспухание АИ было остановлено и началась его регенерация.

Заключение. Для оперативного, а желательно превентивного, противодействия залповым поступлениям опасных токсикантов, например серосодержащих соединений, на биологические очистные сооружения целесообразно интегрировать в их схемы блоки имеющие AOPs-технологии и адаптивные системы управления степенью воздействия окислительно-восстановительных процессов на сточные воды [4].

Список использованных источников

- 1. Вильсон Е. В. Исследования в области удаления восстановленных соединений серы из сточных вод. *Науковедение*, 2013. 3. URL: http://naukovedenie.ru
- 2. Campos J. L., Valenzuela-Heredia A. Pedrouso D., Val del Río D., Belmonte M., Mosquera-Corral A. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. *Journal of Chemistry*, 2016, Article ID 3796352, 12 pages. https://doi.org/10.1155/2016/3796352
- 3. Штепа В. М. Обгрунтування алгоритму експериментально-аналітичних досліджень режимів електротехнічної очистки стічних вод агропромислових об'єктів з метою побудови енергоефективних систем управління. *Енергетика і автоматика*. 2012-01 (11). С. 62–71.
- 4. Штепа В. М. Обгрунтування архітектури системи управління комплексними методами очистки стічних вод промислових об'єктів. Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. 2014. Вип. 154. С. 48–50.