РОСТОСТИМУЛИРУЮЩЕЕ ДЕЙСТВИЕ КОНЪЮГАТОВ ПРИРОДНЫХ БРАССИНОСТЕРОИДОВ С КИСЛОТАМИ НА АМАРАНТ ТРЕХЦВЕТНЫЙ

А.В. Мелюх, П.С. Терёхина, 2 курс Научный руководитель – О.В. Корзюк, старший преподаватель кафедры химии Брестский государственный университет имени А.С. Пушкина

Возделывание Амаранта и использование его продукции в пище, в виде кормов, лекарств в настоящее время представляются жизненно необходимыми. Большое экологическое значение приобретает эта культура не только как источник диетических и экологически чистых продуктов, но и в связи с возможностью очистки и облагораживания с ее помощью почв. Исследования, проведенные в последние десятилетия, выявили массу возможностей его применения для лечения и профилактики различных заболеваний [1, с. 155].

Важную роль в регуляции клеточного гоместаза в экстремальных условиях играют вещества гормональной природы, среди которых наибольший интерес представляют стероидные гормоны растений – брассиностероиды (БС). БС оказывают всестороннее влияние на развитие растений в процессе их онтогенеза. Известно, что они изменяют активность ферментов, мембранный потенциал, активируют синтез белков и нуклеиновых кислот, изменяют состав аминокислот и жирных кислот, вызывают сдвиги в гормональном балансе других эндогенных гормонов, тем самым, сти-

мулируя рост клеток растяжением и деление клеток. Эти сдвиги на клеточном уровне отражаются на уровне целого растения усилением роста и повышением продуктивности [2, с. 193]. Среди преимуществ БС можно отметить их экологическую безопасность и способность вызывать биологические эффекты в очень низких концентрациях по сравнению с другими группами растительных гормонов [3, с. 8].

Для определения оптимальных концентраций БС, оказывающих наибольшее влияние на рост и развитие амаранта трёхцветного (*Amaranthus tricolor L*.) сорта Бразильский карнавал в лабораторных условиях, были использованы ЭК (24-эпикастастерон) и его конъюгаты: тетраиндолилацетат 24-эпикастастерон (S31) и моносалицилат 24-эпикастастерона (S23), синтезированные в лаборатории химии стероидов Института биоорганической химии НАН Беларуси. Для оценки воздействия БС на рост и развитие амаранта был использован диапазон концентраций: 10^{-11} – 10^{-7} М. Проращивание проводили согласно ГОСТу 24933.0–81 [4, с. 3]. Все опыты проводились в четырехкратной повторности. На 10-е сутки определялись морфометрические параметры: длина корня и побега [5, с. 28].

Проведенные исследования показали, что действие ЭК в диапазоне данных концентраций приводит к увеличению длины корня и побега по сравнению с контрольными растениями (таблица).

Таблица – Влияние 24-эпикастастерона и его конъюгатов на морфометрические параметры амаранта трехцветного

Вариант опыта	Корень		Побег	
	длина, мм	% к контролю	длина, мм	% к контролю
Эпикастастерон (ЭК)				
Контроль	$14,19 \pm 0,75$	•	$24,05\pm0,81$	
$10^{-11}\mathrm{M}$	$19,85 \pm 0,91*$	139,9	$27,59 \pm 0,86**$	114,7
$10^{-10}\mathrm{M}$	$19,56 \pm 0,91*$	137,8	$23,45 \pm 0,75$	97,5
10 ⁻⁹ M	$16,66 \pm 0,72*$	117,4	$24,23 \pm 0,80$	100,7
10 ⁻⁸ M	$19,44 \pm 0,74*$	137,0	$26,13 \pm 0,80$	108,6
$10^{-7} \mathrm{M}$	$10,39 \pm 0,58*$	73,2	$18,10 \pm 0,65*$	75,3
Тетраиндолилацетат 24-эпикастастерона (S31)				
Контроль	$14,19 \pm 0,75$		$24,05 \pm 0,81$	
$10^{-11}\mathrm{M}$	$16,42 \pm 0,73$	115,7	$23,74 \pm 0,71$	98,7
$10^{-10}\mathrm{M}$	$20,19 \pm 0,84*$	142,3	$24,97 \pm 0,73$	103,8
$10^{-9} \mathrm{M}$	$19,81 \pm 0,92*$	139,6	$22,91 \pm 0,95$	95,3
$10^{-8} \mathrm{M}$	$22,45 \pm 0,82**$	158,2	$26,14 \pm 0,65$	108,7
$10^{-7} \mathrm{M}$	$18,64 \pm 0,99*$	131,4	$22,66 \pm 0,89$	94,2
2-моносалицилат 24-эпикастастерона (S23)				
Контроль	$14,19 \pm 0,75$		$24,05 \pm 0,81$	
$10^{-11}\mathrm{M}$	$22,97 \pm 0,86**$	161,9	$25,54 \pm 0,87$	106,2
$10^{-10}\mathrm{M}$	23,90 ± 0,82**	168,4	$27,16 \pm 0,78**$	112,9
10 ⁻⁹ M	21,55 ± 0,94**	151,9	$21,2 \pm 1,0$	88,1
$10^{-8} \mathrm{M}$	$20,09 \pm 0,89*$	141,6	$24,39 \pm 0,94$	101,4
$10^{-7} \mathrm{M}$	$21,54 \pm 0,73**$	151,8	$24,01 \pm 0,99$	99,8

Примечание: * — достоверно при $P \le 0.05$; ** — при $P \le 0.01$

Значительное увеличение длины корня и побега наблюдалось при воздействии на растения амаранта трехцветного раствора ЭК в концентрации $10^{-11}\,\mathrm{M}$, так длина корня увеличивалась на 39,9 %, а побега — на 14,7 %. Воздействие ЭК в концентрациях 10^{-10} – $10^{-8}\,\mathrm{M}$ также приводило к увеличению длины корня, и к незначительному приросту побега по сравнению с контрольным опытом, в среднем длина корня увеличилась на 30,7 %, а побега на 6,3 %. Воздействие ЭК в

концентрации 10^{-7} М приводило к уменьшение длины стебля и корня на 26,8 % и 24,7 % соответственно (таблица 1).

Наибольший эффект был получен при обработке семян амаранта трехцветного раствором ЭК в концентрации $10^{-11}\,\mathrm{M}$.

При обработке семян раствором конъюгатами S31 и S23 и дальнейшем проращивании, у растений амаранта трёхцветного наблюдалось увеличение длины корня во всех вариантах опыта (таблица 1), длина побега также увеличилась, но в некоторых случаях наблюдалось незначительное уменьшение его длины по сравнению с контрольными растениями. При воздействии раствора S31 в концентрации $10^{-10}\,\mathrm{M}$ длина корня увеличилась на 42,3 %, а побега на 3,8 % по сравнению с контрольными образцами. Обработка семян раствором S31 в концентрации $10^{-11}\,\mathrm{M}$ также приводила к увеличению длины корня на 15,7 %, но при этом наблюдалось уменьшение длины побега на 1,3 % по сравнению с контрольными растениями. Аналогичная ситуация наблюдалась и при действии на растения S31 в концентрациях $10^{-9}\,\mathrm{M}$ и $10^{-7}\,\mathrm{M}$. Длина корней увеличивалась на 39,6 % и 31,4 % соответственно, а длина побегов уменьшилась на 4,7 % и 5,8 %.

Действие данного конъюгата в концентрации $10^{-8}\,\mathrm{M}$ привело к наибольшему изменению морфометрических параметров амаранта трехцветного. Длина корня увеличивалась на 58,2 %, а побега на 8,7 %.

При воздействии раствора S23 в концентрации 10^{-11} М длина корня увеличилась на 61,9 %, а побега на 6,2 %. Использование S23 в концентрации 10^{-9} М также привело к увеличению длины корня и побега. Длина корня увеличилась на 51,9 %, а побега на 11,9 % соответственно. При действии на растения S23 в концентрациях 10^{-8} М и 10^{-7} М, длина корней увеличилась на 41,6 % и 51,8 %, длина побегов уменьшилась на 1,4 % и 0,2 %.

К большему изменению морфометрических параметров привело действие конъюгата S23 в концентрации 10^{-10} M, так длина корня увеличилась на 68,4 %, а побега на 12,9 % (таблица 1).

Таким образом, по результатам лабораторного опыта можно сделать достоверный вывод, что наиболее эффективными концентрациями исследуемых веществ, оказывающими наибольший эффект на рост корней и побегов амаранта трехцветного сорта Бразильский карнавал в лабораторных условиях являются: ЭК в концентрации 10^{-11} M, S23 в концентрации 10^{-10} M и S31 в концентрации 10^{-8} M.

Список использованных источников

- 1. Чиркова, Т.В. Амарант культура XXI века / Т.В. Чиркова // СПб. ГУ. Соровский образовательный журнал. 1999. № 10. С. 154—163.
- 2. Khripach V.A., Zhabinskii V.N., Khripach N.B. New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus // Brassinosteroids. Bioactivity and Crop Productivity / Eds. Hayat S., Ahmad A. Dordrecht: Kluwer, 2003. P. 189–230.
- 3. Хрипач, В. А. Перспективы практического применения брассиностероидов нового класса фитогормонов / В. А. Хрипач [и др.] // С.-х. биология. 1995. №1. С. 3–12.
- 4. Семена цветочных культур. Правила приемки и методы отбора проб. Межгосудар-ственный стандарт: ГОСТ 24933.0–81. Введ. 01.10.86. М.: Стандартинформ, 2011. 23 с.
- 5. Дышко В.Н. Агрохимические методы исследований: учебно-методическое пособие / В.Н. Дышко, В.В. Дышко, П.В. Романенко Смоленск: ФГБОУ ВПО «Смоленская ГСХА», 2014. 48 с.