ВЫЯВЛЕНИЕ АНТИБАКТЕРИАЛЬНЫХ СВОЙСТВ ЧАЙНОГО ГРИБА (MEDUSOMYCES GISEVI) И ИНДИЙСКОГО МОРСКОГО РИСА (INDIAN MARINE RICE)

Т.В. Романовская, 4 курс Научный руководитель — Т.А. Сеньковец, ассистент кафедры биотехнологии Полесский государственный университет

Культура чайный гриб (*Medusomyces gisevi*) и индийский морской рис (*Indian marine rice*) с давних времен широко используется населением в пищевых целях, а также в качестве природного профилактического и лекарственного средства. И хотя доказано, что метаболиты чайного гриба отличаются богатым поликомпонентным составом, изучение свойств напитка на его основе входит в число важных задач современной медицины в силу наличия противоречивых данных о его применении и эффектах.

Чайный гриб представляет собой симбиотическую культуру, в которой сосуществуют различные формы уксуснокислых бактерий и дрожжевых грибков [3, с.227]. Это многослойная упругая пластинчатая структура, питательной средой для которой, как правило, является подслащенный раствор чая. В образовании гриба участвуют 2 разновидности микроорганизмов: дрожжевые грибки рода *Torula*, переводящие сахар в спирт и углекислый газ, и уксуснокислые бактерии, способствующие окислению вина или спирта в уксус. Раствор гриба содержит до 0,5% органических

кислот: молочную, уксусную, глюкановую, угольную и другие. Кроме этого определены этиловый спирт, витамин С, ароматические и антибиотические вещества [1, с.108].

Индийский морской рис в последнее время стал весьма популярным. Внешне он напоминает рисовые зернышки, поэтому и назван по аналогии с этой крупой [1, с. 109]. В настое морского индийского риса также содержатся несколько видов дрожжеподобных грибков и микроорганизмов, а также разные виды уксуснокислых бактерий. Химический состав гриба изучен недостаточно. Известно, что в его состав входят ферменты, витамины С и D, аминокислоты [3, с.240].

Цель работы: определение и сравнение антибактериальных свойств культур чайного гриба (Medusomyces gisevi) и индийского морского риса (Indian marine rice).

Материалы и методы. Исследования проводились на базе учебной микробиологической лаборатории биотехнологического факультета УО "Полесский государственный университет" в марте 2023 года. Объектами исследования стали симбиотические культуры чайный гриб и индийский морской рис. В качестве тест-культур использовали культуры бактерий: *Staphylococcus spp.*, *Streptococcus spp.*, Salmonella spp., а также *Escherichia coli*.

Антимикробную активность определяли диско-диффузионным методом. Для этого использовалась питательная среда — ГРМ. Первоначально тест-культуры засевали в питательную среду ГРМ-бульон, помещали в термостат с температурным режимом 30 °С и инкубировали в течение суток, далее расплавленную среду (ГРМ) разлили в стерильные чашки Петри, расположенные на горизонтальной поверхности, в таком объеме, чтобы толщина слоя среды была равна 4.0 ± 0.5 мм [2, с.7]. Посев на питательную среду проводился газонным методом: 200 мкл. суточной культуры вносили в чашку Петри и стерильным стеклянным шпателем распределяли по поверхности питательной среды. Затем стерильным пинцетом на засеянную поверхность помещались на равном расстоянии друг от друга, от краев и центра чашки, бумажные диски, пропитанные культуральной жидкостью чайного гриба и индийского морского риса. Засеянные чашки выдерживали в термостате при температуре 30 °С в течение 24 ± 2 ч.

Результаты и их обсуждение. Учет результатов проводился после инкубации чашек Петри. С помощью линейки измерили диаметр зон задержки роста вокруг дисков со стороны микробного газона, включая диаметр самих дисков, с точностью до одного миллиметра [2, с.9]. Результат представлен в таблице.

Таблица – Антибактериальная активность культуральной жидкости чайного гриба (Medusomyces gisevi) и индийского морского риса (Indian marine rice)

Штаммы микроорганизмов	Зоны подавления роста микроорганизмов (среднее значение), мм	
	Культуральная жидкость	
	Индийский морской рис (Indian	Чайный гриб (Medusomyces
	marine rice)	gisevi)
Staphylococcus spp.	Отсутствует зона подавления	6,0±0,41
Streptococcus spp.	$6,7\pm0,48$	10,5±1,19
Salmonella spp.	$6,5\pm0,29$	10,5±0,65
Escherichia coli	8,5±0,65	9,5±0,29

В результате проведенных исследований было выявлено, что индийский морской рис имеет более слабые зоны подавления роста микроорганизмов, чем чайный гриб.

В большей степени антибактериальные свойства индийского морского риса были проявлены в отношении культуры *Escherichia coli*, в меньшей для *Streptococcus spp.* и *Salmonella spp.* Бактерии рода *Staphylococcus* оказались устойчивыми к воздействию культуральной жидкости.

Чайный гриб выразительнее проявил антибактериальные свойства, чем индийский морской рис. Подавление роста и развития исследуемых культур произошло с наилучшим результатом в отношении культур Streptococcus spp. и Salmonella spp. и составило по 10,5 мм. Этот результат оказался выше в 1,6 раза, чем в первом опыте над этими культурами с индийским морским рисом. Для Escherichia coli зона подавления составила 9,5 мм, что тоже результативнее в 1,1 раза, чем в

первом опыте. А в отношении культуры Staphylococcus spp. только чайный гриб показал результат, хоть и относительно слабый -6.0 мм.

Таким образом, проведенные исследования доказывают наличие антибактериальных свойств в культуральных жидкостях чайного гриба (Medusomyces gisevi) и индийского морского риса (Indian marine rice). Чайный гриб показал большую антибактериальную эффективность. Изучение точного механизма, за счет которого обеспечивается этот эффект, остается актуальным. С ростом популярности использования населением напитков из чайного гриба и индийского морского риса профилактической и лечебной целью появляется необходимость масштабных исследований, в том числе и клинических, для оценки целесообразности их применения в фармакологии.

Список использованных источников

- 1. Василенко, З.В. Натуральные напитки брожения на основе рисового гриба как перспективное направление развития современно безалкогольного производства / З.В. Василенко [и др.]. // Вести национальной академии наук Беларуси. -2011. N = 3. C. 108-113.
- 2. Определение чувствительности микроорганизмов к антибактериальным препаратам / методические указания / Национальный правовой Интернет-портал Республики Беларусь [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200038583/. Дата доступа: 28.03.2023.
- 3. Шкитина, Е.Н. Целительные грибы от всех болезней. Чайный гриб, тибетский молочный гриб, березовый гриб чага, индийский морской рис / Е.Н. Шкитина [и др.].— М: РИПОЛ классик, 2012. 640 с.