ВЛИЯНИЕ БРАССИНОЛИДОВ НА ЦЕЛЛЮЛОЛИТИЧЕСКУЮ АКТИВНОСТЬ МИКОРИЗНЫХ ГРИБОВ

Я.С. Камельчук

Полесский государственный университет, Пинск, kamelchuk.ja@polessu.by

Введение. В природе ферменты, осуществляющие биодеградацию целлюлозы, продуцируются в основном грибами и бактериями [1]. Однако только грибы способны в большом количестве выделять целлюлазы в среду. Образование ферментов микроорганизмами зависит не только от видовой принадлежности продуцентов, но и состава питательных сред, используемых для их выращивания [2]. Брассиностероиды (БС) известны как группа стероидных гормонов, которые оказывают комплексное воздействие на растения [3]. Их регуляторная роль проявляется в стимуляции процессов роста, интенсивности фотосинтеза, стрессовых реакций, изменениях белкового обмена, транспорта ионов и многих других аспектах обмена веществ. Информация о роли брассиностероидов в физиологических и биохимических процессах грибов ограничена, а данные о влиянии их на целлюлолитическую активность микоризных грибов отсутствуют.

Методы исследования. В качестве объектов исследования использовали два грибных штамма, природных изолята, депонированных в Белорусской коллекции непатогенных микроорганизмов Института микробиологии НАН Беларуси. Изоляты грибов выделяли из природных объектов представителей семейства вересковых растений аборигенного вида - черники, культурного вида голубики высокорослой [4]. Идентификацию выделенных грибов проводили на основании результатов, протоколов, описанных в предыдущих публикациях автора [5]. Тестируемые грибы выращивали в чашках Петри в течение 3 суток на питательной среде следующего состава (г/л): NaNO₃ $-2,0, K_2HPO_4-1, MgSO_4 \times 7H_2O-0,5, KCl-0,5,$ пептон -0,2, Na-карбоксиметилцеллюлоза -2,0,агар-агар – 17. Для окрашивания использовали раствор Люголя. Целлюлолитическую активность выявляли по способности формировать зоны просветления вокруг колоний, которую оценивали по величине диаметра зон просветления [6]. Микоризные грибы культивировали в жидкой картофельно-сахарозной среде с брассинолидами на качалке в течение 7-10 дней при 24°С. Для определения активности культуральной жидкости использовали диски, пропитанные культуральной жидкостью. Приведенные в работе результаты экспериментов представляют собой усредненные величины трех опытов. При статистической обработке полученных данных использовали компьютерную программу Microsoft Excel.

Результаты и обсуждение. При выявлении целлюлолитической активности использовали методы, основанные на формировании комплексов между полисахаридами и красителями. Способность к деградации грибами целлюлозы оценивали по способности их расти и формировать зоны просветления вокруг колоний на агаризованной минеральной среде с использованием субстрата КМЦ и раствора Люголя. При наличии у микоризных грибов способности продуцировать ферменты, осуществляющие биодеградацию целлюлозы, которые диффундируют в агар и гидролизуют Na-КМЦ, окрашенная агаризованная питательная среда вокруг выросших грибных колоний обесцвечивается, а присутствие брассинолидов усиливает или понижает эту способность (таблица 1,2).

Таблица 1. — Влияние эпи- и гомобрассинолидов на целлюлолитическую активность микоризных грибов

Целлюлолитическая активность площадь лизиса, мм ² (n=3)								
Ph. fortinii			Pezicula sp.					
Концентрации	Площадь	Отноше-	Концентра-	Площадь	Отношение к			
гормонов, М	лизиса, мм ²	ние к кон-	ции	лизиса, мм ²	контролю, %			
		тролю, %	гормонов, М					
Контроль	399,67±9,80	-	Контроль	277,67±9,21	-			
24-ЭБ 10 ⁻⁷	473,67±9,91	119↑	24-ЭБ 10 ⁻⁷	286,33±2,45	103↑			
24-ЭБ 10 ⁻⁹	469±6,12	117↑	24-ЭБ 10 ⁻⁹	407,33±14,70	147↑			
24-ЭБ 10 ⁻¹²	515,67±2,45	129↑	24-ЭБ 10 ⁻¹²	358,33±4,49	129↑			
28-ГБ10 ⁻⁷	241,67±10,73	60↓	28-ГБ10 ⁻⁷	291,33±2,45	105↑			
28-ГБ 10 ⁻⁹	360±6,03	90↓	28-ГБ 10 ⁻⁹	314,33±15,50	113↑			
28-ГБ10 ⁻¹²	477±18,78	119↑	28-ГБ10 ⁻¹²	346,67±8,57	125↑			

Таблица 2. — Влияние эпи- и гомобрассинолидов на целлюлолитическую активность культуральной жидкости микоризных грибов

Целлюлолитическая активность площадь лизиса, мм² (n=3)									
КЖ гриба Ph. fortinii			КЖ гриба Pezicula sp.						
Концентрации гормонов, М	Площадь лизиса, мм ²	Отношение к контролю, %	Концентра- ции гормо- нов, М	Площадь лизиса, мм ²	Отношение к контролю, %				
Контроль	655±15,87	-	Контроль	382,67±8,09	-				
24-ЭБ 10 ⁻⁷	885±5,29	135↑	24-ЭБ 10 ⁻⁷	438,67±9,39	115↑				
24-ЭБ 10 ⁻⁹	1002,67±5,21	153↑	24-ЭБ 10 ⁻⁹	557±2,04	146↑				
24-ЭБ 10 ⁻¹²	910±12,66	139↑	24-ЭБ 10 ⁻¹²	484,33±4,33	127↑				
28-ГБ10 ⁻⁷	982,33±2,45	150↑	28-ГБ10 ⁻⁷	453±2,45	118↑				
28-ГБ 10 ⁻⁹	1555,67±9,33	238↑	28-ГБ 10 ⁻⁹	492±7,35	129↑				
28-ГБ10 ⁻¹²	1098,33±13,62	168↑	28-ГБ10 ⁻¹²	529,67±2,04	138↑				

Оба гриба обладали целлюлолитической активностью (таблица 1) Целлюлолитическая активность по отношению к контролю гриба Ph. fortinii угнеталась при использовании только гомобрассинолида в концентрации 10^{-7} M на 40 % и концентрации 10^{-9} M на 10 %, с концентрацией 10^{-12} был выражен положительный эффект и целлюлолитическая активность возросла на 19 %.

Целлюлолитическая активность гриба $Pezicula\ sp.$ по отношению к контролю была выше при использовании гомобрассинолида со всеми концентрациями. Активность возрастала на 25 % с 28-ГБ 10^{-12} (с этой концентрацией был самый выраженный эффект), с концентрацией 10^{-9} на 13 %, а с концентрацией 10^{-7} на 5 %.

При изучении целлюлолитической активности культуральной жидкости Ph. fortinii и Pezicula sp. (таблица 2) отмечено, активность KW обоих грибов выше KW контроля во всех случаях применения гомобрассинолида со всеми исследуемыми концентрациями. С использованием концентрации $28-\Gamma \ 10^{-7}$ и 10^{-12} М целлюлолитическая активность KW гриба Ph. fortinii была примерно одинаковой и оставалась выше контроля на $50 \div 68$ %, а с концентрацией 10^{-9} активность KW возросла в 2,4 раза и является ярко выраженным изменением целлюлолитической активности при изучении влияния гомобрассинолида.

Целлюлолитическая активность КЖ гриба $Pezicula\ sp.$ оказалась не такой активной как у КЖ гриба $Ph.\ fortinii$, но оставалась выше контроля также со всеми концентрациями гомобрассинолида. Повышенная на $118\ \%$ целлюлолитическая активность отмечена с концентрацией 28-ГБ 10^{-7} . Более выраженная активность с положительным эффектом на 138% наблюдалась с концентрацией гомобрассинолида $10^{-12}\ M.\ C$ применением 28-ГБ 10^{-9} выраженный эффект целлюлолитической активности составил $129\ \%.$

При добавлении гормона 28-ГБ10⁻¹² в обоих грибах наблюдается значительное увеличение площади лизиса, что указывает на усиление целлюлолитической активности. В грибе *Ph. fortinii*

площадь лизиса увеличивается на 119 %, а в грибе *Pezicula sp.* - на 125 %. Увеличение концентрации приводит к снижению активности.

Концентрация гомобрассинолида 10^{-9} М при глубинном культивировании еще более усиливает целлюлолитическую активность КЖ обоих грибов. В КЖ гриба Ph. fortinii площадь лизиса увеличивается на $238\,\%$, а в КЖ гриба $Pezicula\ sp$. - на $129\,\%$. При использовании наименьшей концентрации гормона 28-ГБ 10^{-12} также наблюдается увеличение площади лизиса, но эффект у обоих грибов выражен по-разному. В КЖ гриба Ph. fortinii площадь лизиса увеличивается на 168%, а в грибе $Pezicula\ sp$. - на 138%. Увеличение концентрации гормонов обычно сопровождается менее выраженным увеличением целлюлолитической активности.

Заключение. Таким образом, впервые показана эффективность применения фитогормонов 24эпибрассинолида и 28-гомобрассинолида для усиления способности микоризных грибов к деградации ими целлюлозы. Проведенные эксперименты показали, что добавление брассиностероидов
в любой исследуемой нами концентрации в питательную среду при погружном культивировании
обоих микоризных грибов значительно усиливает целлюлолитическую активность КЖ. Целлюлолитическая активность микоризных грибов связана с их способностью разлагать целлюлозу, основной компонент растительной клеточной стенки. Применение эпи- и гомобрассинолидов способствует увеличению целлюлолитической активности определенных видов микоризных грибов, в
нашем случае Pezicula sp., а с эпибрассинолидом - Ph. fortinii. Это может быть связано с усилением выделения целлюлаз, ферментов, ответственных за разложение целлюлозы.

Список использованных источников

- 1. Bhat, M.K. Cellulases and related enzymes in biotechnology / M.K. Bhat // Biotechnol. Adv. -2000. Vol. 18, N₂ 5. -P. 355–383.
- 2. Мороз И.В., Михайлова Р.В., Шахнович Е.В., Лобанок А.Г. Использование экспрессметодов при скрининге грибных продуцентов целлюлаз // Фитогормоны, гуминовые вещества и другие биологически активные соединения для сельского хозяйства, здоровья человека и охраны окружающей среды: Матер. IX Междунар. конф. daRostim 2013, Львов, 07-10 октября 2013 г. / Львовская политехника; В.Новиков (отв.ред.) [и др.] Львов: Издательство Львовской политехники, 2013. С. 91-92.
- 3. Khripach, V. A. Brassinosteroids: A new class of plant hormones / V. A. Khripach, V. N. Zhabinskii, A. E. De Groot. San Diego, 1998. 456 p.
- 4. Камельчук, Я. С. Особенности выделения и культивирования *in vitro* эндомикоризных грибов из корней представителей семейства вересковых (*Ericaceae juss.*) / Я. С. Камельчук, Н. А. Ламан // Ботаника (исследования) Вып. 47. Мн.: «Колорград». 2018. С. 110-115.
- 5. Камельчук, Я.С. Морфолого-культуральные и молекулярно-генетические особенности коллекционных штаммов микоризных грибов *Phialocephala fortinii* и *Pezicula sp.* / Я.С. Камельчук [и др.] // Доклады Национальной академии наук Беларуси: научный журнал. 2020. Т. 64, № 5. С. 567-573.
- 6. Препараты ферментные. Методика выполнения измерений β -глюканазной, ксиланазной, целлюлазной активностей: МВИ.МН 3235–2009. Введ. 30.09.09. Минск : РУП «Белорус. гос. интметрологии», 2009. 36 с.