

Национальная академия наук Беларуси
Институт биофизики и клеточной инженерии
Министерство образования Республики Беларусь
Белорусский государственный университет
Белорусский республиканский фонд фундаментальных исследований

85-ЛЕТИЮ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК БЕЛАРУСИ ПОСВЯЩАЕТСЯ

МОЛЕКУЛЯРНЫЕ, МЕМБРАННЫЕ И КЛЕТОЧНЫЕ ОСНОВЫ ФУНКЦИОНИРОВАНИЯ БИОСИСТЕМ

МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ

ОДИННАДЦАТЫЙ СЪЕЗД БЕЛОРУССКОГО ОБЩЕСТВЕННОГО ОБЪЕДИНЕНИЯ ФОТОБИОЛОГОВ И БИОФИЗИКОВ

17-20 июня 2014 г., Минск, Беларусь

СБОРНИК СТАТЕЙ В двух частях

Часть 2

Минск Издательский центр БГУ 2014

ФАКТОР РОСТА НЕРВОВ, СТРЕПТОКИНАЗА И ПЛАЗМИНОГЕН КАК РЕГУЛЯТОРЫ ВОДНОГО БАЛАНСА КЛЕТОК НЕРВНОЙ ТКАНИ

В.Н. Никандров, О.Н. Жук, Р.И. Гронская, Е.Ф. Полукошко

Полесский государственный университет, Пинск, Беларусь Институт физиологии НАН Беларуси, Минск, Беларусь

Жизнедеятельность клеток осуществляется благодаря поддержанию водно-солевого баланса, обеспечивающего ход метаболических и цитофизиологических процессов. Этот баланс обеспечивается при участии диффузии, энергозависимого каналового транспорта, включая системы ион-зависимых АТФ-аз и аквапоринов. Однако механизмы его регуляции на молекулярно-клеточном уровне остаются изученными крайне недостаточно. Особенно это касается роли компонентов системы протеолиза.

Ранее описаны принципиально новые свойства субъединиц фактора роста нервов (NGF): плазминоген-активаторная и прямая протеолитическая активности [1,2], а также получены доказательства нейротрофической активности стрептокиназы (SK) и плазминогена (Pg) [например, 3].

Цель настоящей работы — раскрыть влияния упомянутых белков на особенности состояния клеток нервной ткани в условиях дегидратации и гипергидратации.

Исследования проведены на монослойных культурах глиомы С6 и неокортекса новорожденной крысы, выращенных на синтетической питательной среде. Для создания условий дегидратации в питательную среду монослойных культур вносили дополнительно NaCl в конечной концентрации 20 г/л. Состояние гипергидратации вызывали двумя путями: питательную среду для последующего роста монослойных культур разводили дистиллированной водой 1:1 (при этом содержание NaCl в среде уменьшалось вдвое — до 4,5 г/л) или переводили монослойные культуры на среду следующего состава: HEPES — 5 мМ, KCl = 5,4 мМ, $MgSO_4 = 1,2$ мМ, $NaH_2PO_4 = 1,2$ мМ, $CaCl_2 = 2$ мМ, глюкоза — 10 мМ, NaCl = 4,5 г/л (в обоих вариантах были получены одинаковые результаты).

С помощью светового микроскопа, как подробно описано ранее, оценивали морфологические характеристики культур клеток и учитывали количество клеток [4].

Белки вносили с питательную среду одновременно с NaCl или переводом монослойных культур клеток на гипотоническую среду.

Дегидратация. Внесение в синтетическую питательную среду NaCl в конечной концентрации 20 г/л в хорошо развитые монослойные культуры глиомы С6 или неокортекса крысы вызвало перестройку их организации: в первые же часы часть клеток (18% или 23% соответственно) гибла, сохранившиеся сжимались, теряли округлость формы и становились вытянутыми, отростки истончались. Клеточная культура меняла архитектонику — клетки постепенно перестраивались пространственно и собирались в связанные между собою кластеры, отделенные друг от друга свободными зонами. К исходу четвертых суток на месте равномерного монослоя наблюдались «кружева».

Одновременное внесение с NaClNGF в конечной концентрации 50 _{НГ}/мл сохраняло первоначальную архитектонику монослойных культур глиомы С6: клетки имели типичную морфологию тел и отростков. Такое же воздействие оказал нейротрофин в конечной концентрации 100 нг/мл на монослойные культуры клеток неокортекса.

Принципиально аналогичный эффект на культуры глиомы C6 или неокортекса оказало внесение SK в конечной концентрации 1000 МЕ/мл.

При внесении в питательную среду одновременно с хлористым натрием Pg в конечной концентрации 10^{-7} M и экспозиции в течение 48 ч монослой культуры сохранял архитектонику нативных культур и морфологию клеток глиомы C6, площадь клеток уменьшалась на 18%. В случае культур клеток неокортекса внесение в питательную среду одновременно с хлористым натрием Pg в конечной концентрации 10^{-5} M способствовало сохранению архитектоники нативных культур и типичной морфологии клеток и их отростков, площадь клеток практически не изменялась.

<u>Гипергидратация.</u> Инкубирование монослойных культур клеток глиомы С6 в гипотонической питательной среде вызвало гибель 50% клеток, в выживших развивалась гидратация (отек). Эти клетки набухали – их объем увеличивался на 33%.

В случае культур клеток неокортекса в подобных условиях гибель клеток достигала 47%, а увеличение объема выживших – 23%.

При дополнительном внесении NGF в конечной концентрации 50 нг/мл в культурах клеток глиомы С6 гибель клеток составила 17%, объем сохранившихся клеток был увеличен только на 10%. В культурах же неокортекса гибель клеток не превышала 13%, объем сохранившихся клеток возрос только на 11%.

Внесение в питательную среду SK в конечной концентрации 200 МЕ/мл обеспечивало сохранение 93% клеток культуры глиомы C6 при увеличении их объема лишь на 12%, тогда как при концентрации SK 20

МЕ/мл выживал 81% этих клеток при изменениях объема на 19%. Что касается культур клеток неокортекса, то в гипотонической среде добавление SK в конечной концентрации 2000 МЕ/мл сохраняло 89% клеток при возрастании объема на 12%.

Добавление Pg до концентрации 10⁻⁶ М позволило сохранить более 80% клеток в культурах глиомы C6 при увеличении их объема в пределах 14%. Уменьшение концентрации зимогена на порядок влекло снижение количества жизнеспособных клеток глиомы до 66% при увеличении их объема на 19%. Внесении в питательную среду зимогена в конечной концентрации 10⁻⁵ М сопровождалось сохранением жизнеспособными 89% клеток культуры клеток неокортекса, их объем был увеличен на 9%. При уменьшении концентрации Pg в питательной среде на порядок в культуре неокортекса погибало 14%, их объем возрастал на 12%.

Следовательно, исследованные белки способны оказывать влияние на водный баланс клеток нервной ткани. Складывается впечатление, что более эффективно они регулировали его в условиях гипертонической среды, хотя в этом плане требуются более глубокие и разноплановые исследования. Более того, полученные результаты дают основания считать, что в регуляции водного баланса клеток существенное значение могут играть компоненты системы протеолиза, однако для раскрытия механизма подобной регуляции необходимы дальнейшие специальные исследования. Вместе с тем, на основе изложенные результатов нами был предложен ряд способов сохранения клеток нервной ткани в условиях дегидратации и гипергидратации [например, 5,6].

Литература

- 1. Nikandrov V.N.[et al.] // In: «18 Intern. Congress of Biochem. Mol. Biol. Abstract Book», Birmingham, 2000.—№ 1152— P. 317.
- 2. НикандровВ.Н., ПыжоваН.С. // Вкн.: «ТрудыВсероссийскойконфер. «Проблемы медицинск. энзимологии»». М., 2002. С. 163–164.
- 3. Никандров В.Н., Жук О.Н. Клеточная трансплантология и тканевая инженерия. −2011. Т. 6, № 1. С. 36–48.
- 4. Жук О.Н., Калюнов В.Н., Гулецкая Е.Н. // Весці АН БССР. Сер.біял. навук. 1986. №1. С. 56–60.
- 5. Жук О.Н., Никандров В.Н., Гронская Р.И., Полукошко Е.Ф. // Патент ВҮ № 15379 от 07.10.2011.
- 6. Жук О.Н., Никандров В.Н., Гронская Р.И., Полукошко Е.Ф. // Патент ВУ № 15815 от 26.01.2012.