ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

«ФИЗИКО-ХИМИЧЕСКАЯ БИОЛОГИЯ»

МАТЕРИАЛЫ ХІ МЕЖДУНАРОДНОЙ НАУЧНОЙ ИНТЕРНЕТ – КОНФЕРЕНЦИИ УДК 577.1.53.005.745 ББК 28.07я421 Ф 51

«ФИЗИКО-ХИМИЧЕСКАЯ БИОЛОГИЯ»: МАТЕРИАЛЫ ХІ МЕЖДУ-НАРОДНОЙ НАУЧНОЙ ИНТЕРНЕТ – КОНФЕРЕНЦИИ. – Ставрополь: Издво СтГМУ, 2023. – 124 с.

ISBN 978-5-89822-823-1

Члены редакционной коллегии:

д.б.н., профессор Эльбекьян К.С. д.м.н., доцент Гевандова М.Г. к.ф-м.н., доцент Дискаева Е.И. к.ф-м.н., доцент Вечер О.В.

Ответственный редактор: ректор Ставропольского государственного медицинского университета **В.Н. Мажаров**

В сборнике представлены материалы XI международной научной Интернет – конференции по перспективным проблемам биотехнологии лекарственных средств, разработки биологически активных веществ, химии, биологии, экологии, теплофизике и термодинамике, актуальным вопросам современной медицины, а также особенностям преподавания различных дисциплин в медицинских вузах.

Рецензент: первый проректор – проректор по учебной деятельности, д.м.н., профессор **Ходжаян А.Б.**

УДК 577.1.53.005.745 ББК 28.07я421 Ф 51

Рекомендовано к печати редакционно-издательским советом СтГМУ

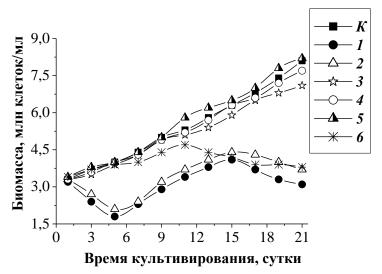
ISBN 978-5-89822-823-1

химия, биология, экология

ВОЗДЕЙСТВИЕ $Fe_2(SO_4)_3$ НА ДИНАМИКУ НАКОПЛЕНИЯ ПИГМЕНТОВ ФОТОСИНТЕЗА КУЛЬТУРОЙ $CHLORELLA\ VULGARIS$

Ильючик И.А., Шульган А.А., Никандров В.Н. УО Полесский государственный университет, Пинск, Республика Беларусь

Актуальность. Железо — истинный биоэлемент, необходимый для окислительно-восстановительных процессов, клеточного дыхания, фотосинтеза, включая образование хлорофилла. В высоких же концентрациях оно задерживает рост водорослей, замедляет процессы фотосинтеза и, в целом, оказывает негативное воздействие на живые организмы. В литературе встречаются отдельные данные о влиянии железа (III) на пигменты фотосинтеза хлореллы [например, 1]. Однако они получены для ограниченного диапазона концентрации катионов железа и довольно коротких сроков культивирования.


Цель и задачи. Раскрыть особенности динамики уровня фотосинтетических пигментов культуры *Chlorella vulgaris* при дополнительном внесении в питательную среду ионов железа, а также при его отсутствии в питательной среде.

Материалы и методы исследования. Исследования выполнены на культуре *Ch. vulgaris*, штамм С 111 IBCE С-19. Микроводоросль выращивали на среде Тамия [2], которую использовали в качестве контроля, в сосудах объемом 0,1 л при температуре 25 ± 1 °C, освещенности на поверхности сосуда 5000 лК, продолжительности световой и темновой фазы 12 ч/12 ч. В среду Тамия, вносили $\text{Fe}_2(\text{SO}_4)_3$ до конечной концентрации 10^{-8} – 10^{-4} М. Отдельный вариант питательной среды солей железа не содержал. Биомассу клеток учитывали через каждые два дня на протяжении 21 дня культивирования, используя камеру Горяева. Отбирали аликвоты культуры по $10 \pm 0,36$ млн клеток, определяли концентрацию фотосинтетических пигментов как описано ранее [2]. Все исследования выполнены троекратно. Полученные результаты обработаны статистически по t-коэффициенту Стьюдента для уровня значимости $P \leq 0,05$ с использованием программы Statistica 6.0.

Результаты исследования и обсуждение. На среде Тамия (контроль) уровень биомассы хлореллы достигал максимума на 21-е сутки роста: прирост составил 145,5% в сравнении с 1-ми сутками (рисунок). Концентрация хлорофилла a увеличивалась до 11-х суток (+30%), затем падала к 17 суткам и вновь росла, достигая максимума на 21-е сутки (+49%). Концентрация хлорофилла b достигала максимума на 17-е сутки (+133,5%), а каротиноидов — на 9-е сутки

(+67%) в сравнении с началом культивирования. На 21-е сутки уровни хлорофилла \boldsymbol{b} и каротиноидов снизились почти в 2 раза по сравнению со временем их максимального накопления (таблица).

В отсутствие железа в питательной среде и при высоких его концентрациях (10^{-4} и 10^{-5} М) рост культуры подавлялся на протяжении всего периода культивирования. Уровень пигментов в данных вариантах (а для хлорофилла b и каротиноидов также и при концентрации $Fe_2(SO_4)_3$ 10^{-6} М) существенно снижался в сравнении с контролем. Так в варианте среды, не содержащей железо, концентрации хлорофиллов a, b и каротиноидов были ниже в сравнении с контролем на 19-50, 29-69 и 17-41% соответственно, а в варианте с высоким содержанием железа в питательной среде — на 13-48%, 23-60%, 16-63% соответственно.

Рисунок — Динамика накопления биомассы культурой *Chlorella vulgaris* при добавлении в питательную среду Fe₂(SO₄)₃, M: K — контроль; I − 10^{-4} ; 2 − 10^{-5} ; 3 − 10^{-6} ; 4 − 10^{-7} ; 5 − 10^{-8} M; 6 — среда Тамия, не содержащая железа

В концентрациях 10^{-6} – 10^{-8} М ионы $\mathrm{Fe^{3+}}$ не оказали существенного влияния на рост хлореллы в сравнении с контролем. Уровень хлорофилла \boldsymbol{a} при данных концентрациях эффектора на 9-е сутки был выше на 16–17%, а на 17-е сутки на 19–46% в сравнении с контролем. Накопление хлорофилла \boldsymbol{b} и каротиноидов при данных концентрациях железа не возрастало, и лишь при концентрации $\mathrm{Fe_2}(\mathrm{SO_4})_3$ 10^{-8} М на 7-е сутки и в период 11–13 сутки их уровень возрос на 20–22% в сравнении с контролем.

 $\it Tаблица. - Д$ инамика концентраций фотосинтетических пигментов (мкг/млн 10^2 клеток, $M \pm m$) культуры хлореллы при добавлении $Fe_2(SO_4)_3$ в питательную среду (n=3)

Время			Концентр	ация Fe ₂ (S	O4)3, M				
роста,	L arrest a str	10-4	10-5	10-6	10 ⁻⁷	10-8	Среда без		
сутки	Контроль	10	10 '	10 "	10	10 "	железа		
Хлорофилл а									
1	$9,2\pm0,06$	7,8±0,05*	8,0±0,05*	$8,2\pm0,02$	$9,2\pm0,01$	$9,6\pm0,07$	8,9±0,05		
3	$10,4\pm0,03$	6,4±0,03*	7,7±0,02*	9,0±0,07*	$10,0\pm0,03$	10,4±0,05	$9,2\pm0,07$		
5	$11,5\pm0,05$	6,6±0,04*	6,7±0,04*	$10,5\pm0,08$	$10,9\pm0,05$	12,0±0,03	9,3±0,09*		
7	$11,3\pm0,06$	5,9±0,07*	6,1±0,07*		$11,5\pm0,06$				
9	$10,8\pm0,09$	6,2±0,09*	6,8±0,06*	12,7±0,06	$12,5\pm0,09$	12,5±0,07*	$9,9\pm0,05$		
11	$12,0\pm0,04$	7,9±0,02*	7,6±0,08*	12,0±0,09	$11,7\pm0,07$	$11,9\pm0,04$	$11,0\pm0,06$		
13	$11,8\pm0,08$	8,2±0,03*	8,3±0,06*			$12,7\pm0,03$	8,7±0,09*		
15	$10,1\pm0,09$	$8,9\pm0,05$	$9,1\pm0,09$	$10,1\pm0,04$	$15,5\pm0,05$	13,3±0,08*	7,9±0,04*		
17	$9,9\pm0,06$	$9,1\pm0,06$	$9,6\pm0,03$		$14,4\pm0,03$				
19	$11,8\pm0,05$	8,5±0,02*	$10,0\pm0,01$	11,5±0,06	$12,2\pm0,04$	11,6±0,06	7,2±0,04*		
21	$13,7\pm0,07$	8,0±0,08*	$10,3\pm0,02$	$12,4\pm0,03$	$14,6\pm0,06$	$14,7\pm0,02$	6,9±0,07*		
			Хлороф	bилл b					
1	12,6±0,04	12,1±0,02	$12,2\pm0,07$	12,4±0,08	13,8±0,07	13,5±0,09	$12,1\pm0,04$		
3	$13,4\pm0,07$	10,3±0,03*	10,0±0,04*	10,9±0,09*	$12,7\pm0,05$	$12,7\pm0,06$	15,3±0,03*		
5	$16,1\pm0,04$	8,8±0,05*	9,4±0,06*	10,0±0,02*	10,7±0,02*	$17,4\pm0,03$	$15,6\pm0,05$		
7	$15,4\pm0,06$	8,6±0,06*	8,7±0,07*	9,4±0,05*	$17,1\pm0,03$		$16,0\pm0,06$		
9	$18,5\pm0,09$	11,4±0,07*	12,3±0,08*				13,2±0,05*		
11	$19,3\pm0,08$	12,6±0,08*	14,2±0,09*				12,4±0,08*		
13	$21,9\pm0,04$	14,5±0,02*	15,1±0,03*	19,2±0,05*	$21,3\pm0,08$	$23,7\pm0,07$	11,4±0,09*		
15	$26,3\pm0,09$	13,2±0,04*	16,8±0,04*				9,5±0,07*		
17	$29,3\pm0,07$	11,8±0,03*	12,4±0,06*				9,0±0,06*		
19	$24,6\pm0,06$	10,2±0,06*	11,6±0,07*				8,4±0,04*		
21	$21,1\pm0,07$	9,7±0,07*	10,4±0,05*	13,6±0,07*	16,1±0,05*	$22,7\pm0,05$	8,1±0,03*		
			Кароти	ноиды					
1	$1,1\pm0,05$	0,9±0,02*	1,0±0,03*	$1,1\pm0,07$	$1,2\pm0,05$	1,3±0,03*	$1,2\pm0,06$		
3	$1,0\pm0,03$	0,7±0,03*	$0,7\pm0,07*$	$0,9\pm0,06$	$1,1\pm0,02$	1,1±0,05*	1,2±0,05*		
5	$1,3\pm0,04$	0,5±0,05*	0,7±0,09*	$0,8\pm0,05*$	$1,3\pm0,04$	$1,4\pm0,08$	$1,3\pm0,03$		
7	$1,6\pm0,06$	0,7±0,07*	$0,9\pm0,07*$	1,0±0,08*	$1,4\pm0,09$	$1,7\pm0,02$	$1,4\pm0,07$		
9	$1,9\pm0,07$	0,8±0,08*	1,1±0,08*	1,2±0,05*	$1,7\pm0,08$	$1,9\pm0,02$	$1,7\pm0,06$		
11	$1,8\pm0,03$	1,0±0,02*	1,2±0,06*	1,3±0,04*	$1,9\pm0,07$	2,2±0,06*	$1,7\pm0,08$		
13	$1,6\pm0,05$	1,3±0,03*	1,3±0,03*	$1,4\pm0,05$	1,9±0,05*	1,9±0,04*	$1,6\pm0,04$		
15	$1,5\pm0,04$	1,1±0,04*	1,2±0,08*	$1,4\pm0,02$	1,5±0,03	1,6±0,03	$1,4\pm0,06$		
17	$1,4\pm0,08$	$1,2\pm0,06$	$1,4\pm0,06$	$1,3\pm0,03$	$1,3\pm0,04$	$1,4\pm0,07$	1,2±0,05*		
19	$1,6\pm0,06$	1,0±0,05*	$1,4\pm0,07$	$1,5\pm0,08$	1,8±0,05*	$1,7\pm0,08$	0,9±0,03*		
21	1,1±0,02	$1,0\pm0,07$	$1,1\pm0,05$	$1,1\pm0,09$	$1,1\pm0,06$	1,2±0,06	0,7±0,04*		

^{*} – изменения статистически достоверны при $P \le 0.05$

Выводы. Итак, $Fe_2(SO_4)_3$ в диапазоне концентраций 10^{-4} – 10^{-8} М оказал различное воздействие на накопление фотосинтетических пигментов культурой хлореллы в динамике ее роста. Отсутствие железа в среде, а также внесение в нее $Fe_2(SO_4)_3$ в концентрациях 10^{-4} и 10^{-5} М негативно сказалось на росте

культуры и уровне пигментов. При более низких концентрациях $- \le 10^{-7} \ \mathrm{M}$ было выявлено увеличение уровня хлорофиллов и каротиноидов.

Литература

- 1. Saberi1, A. Mg, Sn, Cd, Zn and Fe accumulation in unicellular green alga Chlorella vulgaris and its effects on growth, content of photosynthetic pigments and protein // A. Saberi1 [et al.] // Thai J. Agric. Sci. 2022. Vol. 55, No 3. P. 135–145.
- 2. Ильючик, И.А. Методические рекомендации по изучению биохимических свойств одноклеточных зеленых водорослей (на примере *Chlorella vulgaris*) / И.А. Ильючик, В.Н. Никандров. Пинск: ПолесГУ, 2020. 29 с.

СОДЕРЖАНИЕ

химия, биология, экология

Ильючик И.А., Шульган А.А., Никандров В.Н. ВОЗДЕЙСТВИЕ Fe2(SO ₄) ₃ НА ДИНАМИКУ НАКОПЛЕНИЯ	7
ПИГМЕНТОВ ФОТОСИНТЕЗА КУЛЬТУРОЙ <i>CHLORELLA VULGARIS</i>	7
АГРЕГАТИВНАЯ УСТОЙЧИВОСТЬ НАНОЧАСТИЦ СЕЛЕНА, СТАБИЛИЗИРОВАННЫХ ДИДЕЦИЛДИМЕТИЛАММОНИЯ БРОМИДОМ	10
Блинов А.В., Рехман З.А., Бочаров Н.М., Артюшин С.В., Вакуленко М.В. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВИДА ОСАДИТЕЛЯ НА ПРОЦЕСС СИНТЕЗА НАНОРАЗМЕРНОГО КАРБОНАТА МАРГАНЦА	12
Гмыря М. А., Апагуни К. А., Апагуни В. В., Обедина С. А. КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ПИТЬЕВОЙ ВОДЫ В СТАВРОПОЛЬСКОМ КРАЕ	15
Михайленко А.К., Долгашова М.А., Макаренко Э.Н., Прасолова О.В, Николенко Т.С.	
НАСЛЕДСТВЕННЫЙ ФАКТОР БОЛЕЗНИ АЛЬЦГЕЙМЕРА И ОСВЕДОМЛЕННОСТЬ СТУДЕНТОВ МЕДИЦИНСКОГО ВУЗА	18
СТАБИЛИЗИРОВАННЫХ АЛКИЛПОЛИГЛИКОЗИДОМ	21
Комарова А.А., Дюдюн О.А., Эльбекьян К.С., Яндиев О.А., Блинов А.В. ПОЛУЧЕНИЕ, МОДЕЛИРОВАНИЕ И ИССЛЕДОВАНИЕ ФИЗИКО- ХИМИЧЕСКИХ СВОЙСТВ ФУЛЛЕРЕНОВЫХ ДИСПЕРСИЙ	23
Данилова Е.А., Субботина В.Е., Обедина С.А. ПОПУЛЯЦИОННОЕ СОСТОЯНИЕ МОЛОДЁЖИ	28
Гевандова М.Г., Прасолова О.В., Михайленко А.К., Макаренко Э.Н., Климанович И.В., Николенко Т.С., Кунпан П.И., Прасолов Д.Е. СОВЕРЕМЕННЫЕ МЕТОДЫ ЛИЦЕВОЙ АНТРОПОМЕТРИИ	
И ОСОБЕННОСТИ СТРОЕНИЯ ЧЕРЕПА В ЮНОШЕСКОМ ВОЗРАСТЕ	31
маглакеллозе д.т. СИНТЕЗ И ИССЛЕДОВАНИЕ НАНОРАЗМЕРНЫХ ФОРМ КАРБОНАТОВ, СИЛИКАТОВ И ФОСФАТОВ КАЛЬЦИЯ, ЦИНКА И МАГНИЯ	33
ПЕРСПЕКТИВНЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА	
Гвозденко А.А., Блинов А.В., Рехман З.А., Леонтьев П.С., Сенкова А.О., Артюшин С В. ИССЛЕДОВАНИЕ АНТИОКСИДАНТНОЙ АКТИВНОСТИ МОЛОКА, ОБОГАЩЕННОГО КОМПЛЕКСАМИ ЭССЕНЦИАЛЬНОГО	
МИКРОЭЛЕМЕНТА ЦИНКА С АСКОРБИНОВОЙ КИСЛОТОЙ И НЕЗАМЕНИМЫМИ АМИНОКИСЛОТАМИ	35
И НЕЗАМЕНИМЫМИ АМИНОКИСЛОТАМИ	33
ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СВОИСТВ НАПОЧАСТИЦ СМЕШАННОГО ГЕКСАЦИАНОФЕРРАТА ЖЕЛЕЗА-НИКЕЛЯ	27

Блинова А. А., Пирогов М. А., Шевченко И.М., Кузнецов Е.С., Шуман Е.Р. ИССЛЕДОВАНИЕ ПРОЦЕСА СТАБИЛИЗАЦИИ НАНОЧАСТИЦ ФОСФАТА МЕДИ НЕЗАМЕНИМЫМИ АМИНОКИСЛОТАМИ	40
Голик А.Б., Блинов А.В., Нагдалян А.А., Пирогов М.А., Тараванов М.А. КОМПЬЮТЕРНОЕ КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТАБИЛИЗАЦИИ ОКСИДА МЕДИ МЕТИЛЦЕЛЛЮЛОЗОЙ	43
Блинов А.В., Гвозденко А.А., Колодкин М.А., Голик А.Б., Бочаров Н.М. МОЛОЧНЫЙ ПРОДУКТ, ОБОГАЩЕННЫЙ НАНОЭМУЛЬСИЕЙ ВИТАМИНА А	45
Сенкова А.О, Блинов А.В., Нагдалян А.А., Леонтьев П.С., Пирогов М.А. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ КОНФИГУРАЦИИ СТАБИЛИЗАЦИИ НАНОЧАСТИЦ ДИОКСИДА МАРГАНЦА ГИДРОКСИЭТИЛЦЕЛЛЮЛОЗОЙ	47
ОСОБЕННОСТИ ПРЕПОДАВАНИЯ В МЕДИЦИНСКОМ ВУЗЕ	
<i>Литвинова М.Г.</i> РОЛЬ ХИМИИ В ФОРМИРОВАНИИ ОСНОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ У СТУДЕНТОВ МЕДИЦИНСКОГО ВУЗА	51
Абдулгалимов Р.М., Абдулгалимова Г.Н. ЦИФРОВЫЕ ТЕХНОЛОГИИ В РЕШЕНИИ ПРОБЛЕМЫ ЧЕЛОВЕЧЕСКОГО ФАКТОРА В МЕДИЦИНЕ	54
Салтанова Е.В., Головко О.В. ПРИМЕНЕНИЕ СКВОЗНЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ «ФИЗИКА, МАТЕМАТИКА» В МЕДИЦИНСКОМ ВУЗЕ	56
Лопатина Е.С., Месяцева Л.С. ОСОБЕННОСТИ ПРЕПОДАВАНИЯ ФИЗИКИ СТУДЕНТАМ МЕДИЦИНСКИХ СПЕЦИАЛЬНОСТЕЙ	59
Месяцева Л.С., Лопатина Е.С. ОСОБЕННОСТИ ПРЕПОДАВАНИЯ ФИЗИКИ ДЛЯ СТУДЕНТОВ С ОВЗ	62
Сучкова Е.Н. ПРИМЕНЕНИЕ МОДУЛЬНЫХ ТЕХНОЛОГИЙ ДЛЯ ОБУЧЕНИЯ «МЕДИЦИНСКОЙ ЭЛЕКТРОНИКЕ» В ДВГМУ	64
Эльбекьян К.С., Оверченко В.В., Кремнева Г.М., Романова Л.В., Матвиенко Э.Р. 85 ЛЕТ ПРИЕМСТВЕННОСТИ И НОВАТОРСТВУ НА КАФЕДРЕ	67
ОБЩЕЙ И БИОЛОГИЧЕСКОЙ ХИМИИ	
В СОЗДАНИИ СОВРЕМЕННОГО БИОЛОГИЧЕСКОГО ОРУЖИЯ	71
ТЕХНОЛОГИЙ В МЕДИЦИНСКОМ ВУЗЕ	74 76

ТЕПЛОФИЗИКА, ТЕРМОДИНАМИКА И ФИЗИЧЕСКАЯ ГИДРОДИНАМИКА

Дискаева Е.И., Вечер О.В., Бобров М.Н. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ В ДИСПЕРСНЫХ СИСТЕМАХ	79
Е.И. Дискаева, О.В. Вечер, Е.Н. Дискаева	1)
НЕКОТОРЫЕ ОСОБЕННОСТИ НИОСОМ КРЕМНИЙОРГАНИЧЕСКОЙ ПРИРОДЫ	81
достижения современной медицины	
Гевандова М.Г., Николенко Т.С., Хубиев Д.И, Хасанов А.Д.	
АНАЛИЗ ЗАБОЛЕВАЕМОСТИ КОРОНАВИРУСНОЙ ИНФЕКЦИЕЙ В ЮНОШЕСКИЙ ПЕРИОД ОНТОГЕНЕЗА В ЗАВИСИМОСТИ	
ОТ ГРУППЫ КРОВИ ПО СИСТЕМЕ АВО	84
Русинова Т.В., Виноградов Р.А., Чупрынин Г.П., Асякина А.С. ГИСТОЛОГИЧЕСКАЯ ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ	
БИОСИНТЕТИЧЕСКОГО НЕРВНОГО КОНДУИТА ПРИ ЗАМЕЩЕНИИ	
ДЕФЕКТА ПЕРИФЕРИЧЕСКОГО НЕРВА	86
Апагуни А.Э., Вахтин Б.Б., Эсеналиев А.А., Апагуни Б.Б. МАЛОИНВАЗИВНЫЙ ОСТЕОСИНТЕЗ ПРИ ТЯЖЕЛОЙ	
ПОЛИТРАВМЕ	88
<i>Шахалиева Л.Р., Сорокина Н.Д., Польма Л.В.</i> НЕЙРОФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ И ОЦЕНКА БОЛЕВОГО	
СИНДРОМА В ДИАГНОСТИКЕ НАЧАЛЬНЫХ ФОРМ ДИСФУНКЦИИ ВНЧС	89
Сорокина Н.Д., Селицкий Г.В., Жердева А.С., Цагашек А.В. ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА БИОЭЛЕКТРИЧЕСКУЮ	
АКТИВНОСТЬ ГОЛОВНОГО МОЗГА И СОСТОЯНИЕ	
АВТОНОМНОЙ НЕРВНОЙ СИСТЕМЫ	92
Чомаева Л.Х., Чекунова Л.Х. ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДОВ СОВРЕМЕННОЙ ДИАГНОСТИКИ	94
Арзуманов С. В., Апагуни А.Э., Посух В.В., Апагуни В.В.	94
СОВРЕМЕННАЯ МАЛОИНВАЗИВНАЯ ХИРУРГИЯ ЗАБОЛЕВАНИЙ КИСТИ	
В УСЛОВИЯХ МНОГОПРОФИЛЬНОГО ЦЕНТРА ГОРОДА СТАВРОПОЛЯ	97
Русинова Т.В., Асякина А.С., Козмай Я.А.	,,
ОЦЕНКА ЭФФЕКТИВНОСТИ БИОСИНТЕТИЧЕСКОГО АНАЛОГА ПЕРИФЕРИЧЕСКОГО НЕРВА НА ОСНОВЕ СУЛЬФАКАТИОНИТНОЙ	
МЕМБРАНЫ	100
Корпань М.В., Сорокина Н.Д., Селицкий Г.В., Савин Л.А.	
ОСОБЕННОСТИ ОЦЕНОК БОЛИ В ГРУППАХ ДЕТЕЙ ПОДРОСТКОВОГО ВОЗРАСТА С РАЗНЫМ СТАТУСОМ	
АВТОНОМНОЙ НЕРВНОЙ СИСТЕМЫ	102
Раджабов О.В., Батурин В.А., Батурина М.В., Грудина Е.В., Филь А.А. ИЗМЕНЕНИЕ УРОВНЕЙ АЛЬФА-N-АЦЕТИЛГАЛАКТОЗАМИНИДАЗЫ	
И АУТОАНТИТЕЛ К НЕЙ У БОЛЬНЫХ РАКОМ МОЛОЧНОЙ ЖЕЛЕЗЫ	
ПРИ ПРОГРЕССИРОВАНИИ И СТАБИЛИЗАЦИИ ОПУХОЛЕВОГО РОСТА, А ТАКЖЕ ПРИ ПОЛОЖИТЕЛЬНОЙ ДИНАМИКЕ	
РАЗВИТИЯ ПРОПЕССА	105

Батурина М.В., Бейер Э.В.	
ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ ИЗМЕНЕНИЙ СОДЕРЖАНИЯ	
НЕЙРОРЕЦЕПТОРОВ В ТКАНИ ГОЛОВНОГО МОЗГА,	
УРОВНЕЙ АУТОАНТИТЕЛ К НИМ В КРОВИ И ВЫРАЖЕННОСТЬЮ	
ГАЛОПЕРИДОЛОВОЙ КАТАЛЕПСИИ У КРЫС, КОТОРЫМ	
ДЛИТЕЛЬНО ВВОДИЛИСЬ ГАЛОПЕРИДОЛ И РЕСПИРИДОН	108
БИОТЕХНОЛОГИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ	
Камарян В.С., Макичян А.Т., Унанян Л.С., Эльбекян К.С.,	
Бейер Э.В., Дискаева Е.И.	
IN SILICO ПОИСК И ВЕРИФИКАЦИЯ БИОМИШЕНЕЙ	
ДЛЯ МЕЛАТОНИНА В КАЧЕСТВЕ ПОТЕНЦИАЛЬНОГО	
АНТИДИАБЕТИЧЕСКОГО АГЕНТА	112
Глушко А.С., Базиков И.А., Дискаева Е.И., Базиков Ф.И.	
МОЛЕКУЛЯРНАЯ ДИНАМИКА ВЗАИМОДЕЙСТВИЯ	
КРЕМНИЙОРГАНИЧЕСКИХ НИОСОМ	
С АНТИМИКРОБНЫМИ ПЕПТИДАМИ	120