МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Ф. СКОРИНЫ ГОМЕЛЬСКИЙ ОБЛАСТНОЙ КОМИТЕТ ПРИРОДНЫХ РЕСУРСОВ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ПОЛЕСЬЯ И СОПРЕДЕЛЬНЫХ ТЕРРИТОРИЙ

Материалы Y Международной научно-практической конференции, Гомель, октябрь 2003 года

Гомель 2003

ЗАГРЯЗНЕНИЕ ОВРАЖНО-БАЛОЧНЫХ ЭКОСИСТЕМ ЗАКАЗНИКА «МОЗЫРСКИЕ ОВРАГИ» РАДИОНУКЛИДАМИ

*В.В. Валетов, *Л.С. Цвирко, **Д.В. Потапов *Мозырский государственный педагогический университет им. Н.К. Крупской, Беларусь, **Гомельский государственный университет им. Ф. Скорины, Беларусь,

e-mail: kovaleva@gsu.unibel.by

Радиометрические измерения проводились на территории оврагов № 9-10 на двух реперных участках, один из которых под № 1, расположен в 100 м, второй - под № 2 - в 500 м от улицы Интернациональной. Ниже в таблице 1 приведены средние значения мощности экспозиционной дозы на обоих участках, полученные на высоте 1 м от поверхности почвы через каждые 5 м по склону оврагов с точностью до 20%.

Таблица 1. Мощность экспозиционной дозы по склону оврагов № 9-10

Расстояние от вершины, м	0	()5	10	15	20	25	30
Реперные участки	M	ощнос	ть экспо	зицион	ной доз	вы, мкР	/ч
Участок №1	15,6	15,0	15,0	16,4	16,8	18,4	18,0
Участок №2	12,4	13,6	15,0	15,6	15,4	.86 -	-
1311411011.1.1.1	21 131	11099 M	er inter	79 1 1 18	19700	-35%9-20	rroll.

Исследования показали, что измеренные значения мощности экспозиционной дозы по склонам оврагов на участке №1 выше результатов, полученных на участке №2, что возможно обусловлено различной ориентацией их к частям света и неодинаковой крутизной склона. Реперный участок №1 обращен к северу и имеет большую крутизну, чем участок №2, который обращен к югу, что в итоге приводит к разной степени прогреваемости склонов и вследствие этого к различной миграции радионуклидов вниз по склону. Увеличение мощности экспозиционной дозы по склону вглубь оврагов может быть обусловлена возрастанием плотности древесного и травянистого

ярусов, которые, накапливая радионуклиды, способствуют повышению радиационной загрязненности окружающей среды.

Таблица 2. Удельная активность 137 Cs в пробах почвы и

Видпробы	Вершина оврага, (Бк/кг)	Дно оврага, (Бк/кг)		
	Towns			
Почва	517,0±135,2	213,3±53,4		
Кора березы повислой	200,4±44,6	391,3±81,9		
Побеги березы повислой	20,4±4,5	27,8±5,4		
Листья березы повислой	Менее 7,0	25,8±5,1		

Исследованные участки покрыты лиственными деревьями, такими как береза повислая, граб. С целью изучения степени загрязненности почвы и накопления радионуклидов растительностью были отобраны пробы почвы, листьев, побегов, коры березы повислой. Результаты представлены в таблице 2.