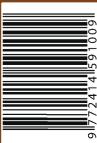

РОССИЙСКИЙ НАУЧНО-ПРАКТИЧЕСКИЙ ЖУРНАЛ

НАУЧНЫЕ ИССЛЕДОВАНИ ФЕ 77-63296 POCKOMHAДЗОР СВИДЕТЕЛЬСТВО ПИ № ФС 77-63296 МАЙ 2018 № 1(20)



САЙТ КОНФЕРЕНЦИИ: HTTPS://SCIENTIFICRESEARCH.RU

XXV Международная заочная научно-практическая конференция

«Научные исследования: ключевые проблемы III тысячелетия» Москва. 2-3 мая 2018 года

Научные исследования

2018. № 1 (20)

Российский импакт-фактор: 0,17

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) Свидетельство ПИ № ФС 77-63296.

Выходит 8 раз в год

Подписано в печать: 28.04.2018 Дата выхода в свет: 03.05.2018

Формат 70х100/16. Бумага офсетная. Гарнитура «Таймс». Печать офсетная. Усл. печ. л. 8,69 Тираж 1 000 экз. Заказ № 1706

Территория распространения: зарубежные страны, Российская Федерация

ТИПОГРАФИЯ ООО «ПресСто». 153025, г. Иваново, ул. Дзержинского, д.39, строение 8

ИЗДАТЕЛЬ ООО «Олимп» Учредитель: Вальцев Сергей Витальевич Москва, ул. Профсоюзная 140

Редакция не всегда разделяет мнение авторов статей, опубликованных в журнале

Свободная цена

Сборник научных трудов

по материалам

XXV Международной заочной научнопрактической конференции «Научные исследования: ключевые проблемы III тысячелетия» (Москва, 2-3 мая, 2018 года)

ГЛАВНЫЙ РЕДАКТОР Котлова А.С.

АДРЕС РЕДАКЦИИ: 153008, РФ, г. Иваново, ул. Лежневская, д.55, 4 этаж Тел.: +7 (910) 690-15-09. Email: info@scientificpublications.ru

Научно-практический журнал «Научные исследования» подготовлен по материалам XXV Международной заочной научно-практической конференции «Научные исследования: ключевые проблемы III тысячелетия»

Ссылка на издание

Научные исследования: ключевые проблемы III тысячелетия / Научные исследования 2018. № 1 (20) // Сб. ст. по мат. XXV Международной заочной научно-практической конференции (Россия, Москва, 2-3 мая, 2018). Москва. Изд. «Научные публикации», 2018. С. 107.

© Издательство «Научные публикации».

HTTP://SCIENTIFICPUBLICATIONS.RU

© Сайт конференций серии: «Научные исследования».

HTTPS://SCIENTIFICRESEARCH.RU

© Научные исследования /Москва, 2017

ВЛИЯНИЕ ПИТАТЕЛЬНЫХ СРЕД И УСЛОВИЙ ГЛУБИННОГО КУЛЬТИВИРОВАНИЯ НА ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ СТЕРЕУМА ЖЕСТКОВОЛОСИСТОГО (STEREUM HIRSUTUM)

Калько Е.И.

Калько Елена Ивановна – аспирант, кафедра биотехнологии, Полесский государственный университет, г. Пинск, Республика Беларусь

УДК: 60:582.284.3

В течение многих столетий грибы используются в народной медицине стран Юго-Восточной Азии, а в настоящее время благодаря уникальным лечебным свойствам приобретают все большую популярность в США и Европе [1]. Перспективными источниками для получения новых лечебно-профилактических препаратов являются грибы рода Стереум (Stereum). Наиболее известным представителям этого рода является стереум жестковолосистый (Stereum hirsutum). Входящие в состав этих грибов проявляют высокую соединения противоопухолевую, иммуностимулирующую, гепатопротекторную, антиоксидантную, антимикробную и противовирусную активности. В природе грибы рода Stereum встречаются в небольшом количестве, так как имеют малых размеров плодовое тело, поэтому в настоящее время для получения препаратов на их основе используется мицелий, полученный биотехнологическим путем [2]. Наиболее распространено твердофазное культивирование этих грибов. Перспективным способом получения биомассы и метаболитов грибов рода Stereum является глубинное культивирование, позволяющее за короткое время получать стандартные продукты с заданными свойствами.

Для глубинного культивирования грибов используются полусинтетические питательные среды, при этом биологически активные соединения могут образовываться не только в мицелии, но и в культуральной жидкости [3]. Однако физиологические потребности грибов рода *Stereum*, а также их способность продуцировать биологически активные вещества, при глубинном культивировании на жидких питательных средах изучены недостаточно. В то же время, влияние биологически активных веществ, грибов *S. hirsutum* на живой организм, его антиоксидантный статус, неспецифическую резистентность, обмен веществ, сохранность и продуктивные качества до сих пор остаются малоизученным. Большой

интерес представляет разработка антиоксидантных субстанций на основе грибов рода *Stereum*, включающей мицелий и культуральную жидкость этих грибов.

Выдвигаются определенные требования к составу питательных сред для культивирования грибов рода *Stereum*. В связи с этим при оптимизации питательных сред для глубинного культивирования грибов *S. hirsutum* следует использовать компоненты, которые поддерживают активный рост мицелия и продуцирование биологически активных веществ, и которые при этом не представляют потенциальной опасности для живого организма.

В научно-исследовательской лаборатории прикладной и фундаментальной биотехнологии на базе УО «Полесский государственный университет» проводятся научно-исследовательские работы с культурами грибов рода *Pleurotus* [3, 4], культивирование грибов рода *Stereum* в данной лаборатории проводится с 2017 года.

Цель исследования — подбор экономически выгодных питательных сред и условий глубинного культивирования гриба стереум жестковолосистый (*Stereum hirsutum*) для достижения наибольшей урожайности.

Материалы и методы исследования. Работа выполнена на штамме *S. hirsutum,* выделенном аспирантом Е.И. Калько, под руководством Е.О. Юрченко доцентом кафедры биотехнологии, в 2017 г. из плодовых тел, растущих на поврежденном дереве в г. Пинске [5, 6].

В нашей работе для глубинного культивирования были выбраны две питательные среды. Для питательной среды № 1 применялся солод ржаной сухой неферментированный ГОСТ 29272. Приготовление среды № 1: 200 г/л неферментативного молотого солода, разводили с 3л водопроводной воды, настаивали сутки, перемешивали несколько раз в течение настаивания, фильтровали и добавляли воду до 1л, рН 5,0-5,5 [7].

Для картофельно-сахарозной среды (питательная среда № 2) использовали картофель сорта Скарб и пищевую сахарозу ГОСТ 21-94. Для приготовления питательной среды № 2 нарезанные клубни картофеля, ломтиками 3-4 мм, отваривали в течение 20 мин, до готовности, отвар фильтровали, объем фильтрата доводили до 1 л, добавляли сахарозу (400 г/л картофельного отвара, 30 г/л сахарозы), рН 5,0-6,0 [5].

Среду № 1 и № 2 разливали в стерильные стеклянные колбы объемом 500 мл по 200 мл, в колбах с ватно-марлевыми пробками стерилизовали, в автоклаве112°С, 40 мин.

Все работы с культурой клеток *in vitro* в лаборатории проводили в стерильных условиях. Перед экспериментом в помещении все поверхности омывались дезинфицирующим раствором, включали ультрафиолетовое облучение помещения на 36 мин за 60 мин до работы. Необходимая лабораторная посуда, инструменты подвергали стерилизации в сухожаровом шкафу при температуре 180°С в течение 60 мин. Инструменты при каждой манипуляции помещали в сосуд с 96°С этиловым спиртом, затем прожигали в пламени горелки, каждый инструмент использовали одноразово.

Эксперимент проводим в ламинарном боксе, пробирку с маточной культурой *S. hirsutum* берем в левую руку на ладонь параллельно расположению пальцев и придерживаем большим пальцем так, чтобы скошенная поверхность среды была хорошо видна. В правую руку как ручку для писания берем инокуляционную иглу и несколько раз проводим ее над пламенем горелки для стерилизации. Мизинцем и безымянным пальцем правой руки вынимаем пробку из пробирки с маточной культурой и осторожно, по стенке, для охлаждения, вводим инокуляционную иглу и берем инокулюм в виде фрагментов ковра мицелия площадью 1 см², вырезаемый вместе с тонким слоем среды около 1 мм толщиной. Края пробирки и пробки проводим через пламя горелки для стерилизации и пробирку с культурой закрываем пробкой. Агаровый блок с мицелием пересеваем в стерильную, жидкую питательную среду № 1; № 2, температура среды 19±1°С.

На накопление биомассы большое влияние оказывает процесс доставки питательных веществ, к клеточной стенке, который обеспечивается процессом перемешивания, поэтому исходя из биологических и морфологических свойств культуры S. hirsutum эксперимент проводили при постоянном перемешивании культуры (на качалке WiseShakeSHO при скорости перемешивания 70 об./мин) мицелий культивировали в течение трех недель в темноте, в термостат при температуре $27\pm1^{\circ}$ С. Полученный результаты обрабатывали в программе Statistika 6».

Результаты и их обсуждение. При выборе лабораторных питательных сред особое внимание уделялось не только накоплению биомассы, но и скорости роста культуры Исследовано влияние компонентов питательных сред и условий культивирования на рост гриба *S. hirsutum*. В таблице 1 показаны результаты глубинного культивирования стереума жестковолосистого (*Stereum hirsutum*).

Таблица 1. Результаты глубинного культивирования S. Hirsutum в колбах на качалке

№ опыта	Пит. среда	Ср.зн. t инкубации С	Объем среды, мл	Переме шивание об./мин	Масса гриба через 3 недели культиви рования	Объем Культ. жид-ти
Вариант 1	КСС	27±1°	200	70	42	150
Вариант 2	КСС	27±1°	200	70	44,3	145
Вариант 3	КСС	27±1°	200	70	50	110
Вариант 4	КСС	27±1°	200	70	42,0	150
Вариант 5	КСС	27±1°	200	70	28,77	90
Вариант 6	КСС	27±1°	200	70	30,33	120
Вариант 7	КСС	27±1°	200	70	12,16	125
Ср. зн.	КСС	27±1°	200	70		
Вариант 1	Р-р солода	27±1°	200	70	-	-
Вариант 2	Р-р солода	27±1°	200	70	=	-
Вариант 3	Р-р солода	27±1°	200	70	-	-
Вариант 4	Р-р солода	27±1°	200	70	-	-
Вариант 5	Р-р солода	27±1°	200	70	-	-
Вариант 6	Р-р солода	27±1°	200	70	-	-
Вариант 7	Р-р солода	27±1°	200	70	-	-
Ср. зн.	Р-р солода	27±1°	200	70	-	-

В нашем эксперименте в питательной среде с использованием ржаного неферментированного солода во всех семи вариантах на 2-3 сутки изменений не наблюдалось, инокулюм опустился на дно колбы, среда потемнела, для культивирования S. hirsutum данная среда не подходит. В картофельно-сахарозной среде инокулюм на 2 сутки после засева на стерильную питательную среду кусочки плодового тела начинали опушаться растущим мицелием. При температуре $27\pm1^{\circ}$ С на картофельно-сахарозной среде формировались 1-2 крупные мицелиальные клубочки и вторичные мелкие клубочки мицелия [8], таблица 2.

Таблица 2. Характер роста глубинной культуры S. hirsutum с использованием картофельносахарозной среды

№ опыта	Количество клубочков мицелия S. Hirsutum по классам диаметра (см)					
	0,3-0,5	0,6-2,0	2,1-3,0	3,1-7,5		
Вариант 1	0	1	0	1		
Вариант 2	0	3	0	0		
Вариант 3	0	0	1	1		
Вариант 4	0	10	0	2		
Вариант 5	0	1	0	1		
Вариант 6	6	0	1	2		
Вариант 7	50	0	0	1		

Поскольку на себестоимость процесса выращивания мицелия грибов большое влияние оказывают оба фактора: состав питательной среды и длительность культивирования, для выращивания гриба *S. hirsutum* мы остановились на картофельно-сахарозной среде и времени культивирования 3 недели, что позволило получать г/л биомассы. При поддержании температуры на уровне 27±1° наблюдается наиболее интенсивный процесс накопления биомассы. С понижением ее или повышением интенсивность уменьшается, что не способствует получению конкурентоспособной продукции.

Вывод. Для оценки влияния компонентов питательных сред на рост и развитие гриба $S.\ hirsutum$ соответствующие источники углерода или азота в составе исходной полусинтетической питательной среды заменяли другими в эквивалентных количествах. Таким образом, исследования показали, что в качестве источников углерода более предпочтительными оказались глюкоза и крахмал. Использование при глубинном культивировании картофельно-сахарозной среды, температуры $27\pm1^{\circ}\mathrm{C}$ и перемешивания $70\ \text{об.}$ /мин является предпочтительным для наилучшего выхода культурального мицелия и культуральной жидкости $S.\ hirsutum$.

Список литературы / References

- 1. *Qin H. et al.* Cell factories of higher fungi for useful metabolite production // Adv. Biochem. Eng. Biotechnol, 2016. Vol. 155. P. 199–235.
- 2. Yun B. S. et al. Sterins A and B new antioxidative compounds from Stereum hirsutum // J. Antibiot, 2002. Vol. 55. P. 208–210.
- 3. Жук О.Н., Ильючик И.А., Кругавеня А.Д., Никандров В.В. Влияние хлорида марганца (II) на протеолитическую активность гриба вешенка обыкновенная (*Pleurotus ostreatus*) при глубинном культивировании // Веснік Палескага дзяржаўнага універсітэта. Серыя прыродазнаўчых навук, Пинск: ПолесГУ, 2017. № 2. С. 62–68.
- 4. Жук О.Н., Бокова О.А., Сакович В.В., Никандров В.В. Особенности роста и развития культуры гриба вешенка обыкновенная (*Pleurotus ostreatus*) в присутствии ионов марганца (II) // Веснік Палескага дзяржаўнага універсітэта. Серыя прыродазнаўчых навук, Пинск: ПолесГУ, 2017. № 2. С. 43–50.
- Калько Е.И. Экология и грибная биотехнология / Ecology and fungal biotechnology // International scientific review of problems and prospects of modern Science and education: XLII International scientific and practical conference: collection of scientific articles, Boston, USA, 25-26 February 2018. Boston: Massachusetts printed in the United States of Amerika, 2018. Vol. 2 (44). P. 16–22.

- 6. Калько Е.И. Особенности роста Stereum hirsutum in vitro при обогащении среды марганцем / The growth characteristics of Stereum hirsutum in vitro enrichment of the medium with manganese // International scientific review of the problems of natural sciences and medicine: I linternational scientific specialized conference: collection of scientific articles. Boston, USA. 29-30 March, 2018. Boston: Massachusetts printed in the United States of Amerika, 2018. Vol. 3. P. 12–14.
- 7. *Калько Е.И., Жук О.Н.* Сравнительная характеристика выращивания Stereum hirsutum и Pleurotus ostreatus in vitro // Биотехнология: достижения и перспективы развития: материаллы II международной научно–практической конференции. УО «Полесский государственный университет». г. Пинск. 7-8 декабря, 2017 г. / Министерство образования Республики Беларусь [и др.]; редкол.: К.К. Шебеко [и др.]. Пинск: ПолесГУ, 2017. С. 15–16.
- 8. Сакович В.В., Жук О.Н. Влияние питательных сред и условий глубинного культивирования на эффективность выращивания вешенки обыкновенной (Pleurotus ostreatus) // Биотехнология: достижения и перспективы развития: материаллы международной научно—практической конференции, УО «Полесский государственный университет» г. Пинск, 7-8 декабря 2017 г. / Министерство образования Республики Беларусь [и др.]; редкол.: К.К. Шебеко [и др.]. Пинск: ПолесГУ, 2017. С. 39–41.

Содержание

БИОЛОГИЧЕСКИЕ НАУКИ	5
<i>Огурцова О.Н., Кожамжарова Л.С.</i> УСТОЙЧИВОСТЬ СОРТОВ ВИНОГРАДА К МИЛДЬЮ И ОИДИУМУ	5
Калько Е.И. ВЛИЯНИЕ ПИТАТЕЛЬНЫХ СРЕД И УСЛОВИЙ ГЛУБИННОГО КУЛЬТИВИРОВАНИЯ НА ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ СТЕРЕУМА ЖЕСТКОВОЛОСИСТОГО (STEREUM HIRSUTUM)	8
ТЕХНИЧЕСКИЕ НАУКИ	13
Камалов Т.С., Шаюмова З.М. ВЛИЯНИЕ ВЫСШЕЙ ГАРМОНИКИ НА ВЫБОР МОЩНОСТИ ЭЛЕКТРОДВИГАТЕЛЯ	13
Алексеев С.А., Парфенов Н.П., Стахно Р.Е. МЕТОД СЕТЕВОГО ПЛАНИРОВАНИЯ ФОРМАЛЬНОГО ОПИСАНИЯ И ОЦЕНКИ ПРОЦЕССОВ ФУНКЦИОНИРОВАНИЯ ТРЕНАЖЕРНОЙ ПОДГОТОВКИ В СИСТЕМЕ ОРГАНОВ ВНУТРЕННИХ ДЕЛ	16
Джылкычиев А.И., Бекбоев А.Р., Арыкбаев К.Б., Джылкычиев М.К. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ПРОЦЕССОВ ПРИ ЭКСТРУЗИВНОМ ФОРМОВАНИИ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ НЕ СКВОЗНЫМИ ПУСТОТНЫМИ ОТВЕРСТИЯМИ ИЗ ПОЛУСУХОЙ СМЕСИ	20
Стахно Р.Е., Сударев В.С. ПРИМЕНЕНИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ В ПОВСЕДНЕВНОЙ ДЕЯТЕЛЬНОСТИ ОРГАНОВ ВНУТРЕННИХ ДЕЛ	24
Иванова Э.В., Иванов П.В., Кидаев Н.С., Мотяков Н.Ю. ОСОБЕННОСТИ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ВЯЗКИХ НЕФТЕЙ И НЕФТЕПРОДУКТОВ	28
Иванова Э.В., Иванов П.В., Крылова М.В., Шаньгина А.О. СОВРЕМЕННЫЕ МЕТОДЫ ВОЗДЕЙСТВИЯ НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА ВЯЗКИХ НЕФТЕПРОДУКТОВ ПРИ ВЫГРУЗКЕ ИЗ ЖЕЛЕЗНОДОРОЖНЫХ ЦИСТЕРН	31
Непорожнев А.С., Могучий В.В., Товстопят А.С. ОБОРУДОВАНИЕ ДЛЯ ТРАНСПОРТИРОВАНИЯ БЕТОННЫХ СМЕСЕЙ В УСЛОВИЯХ СТРОИТЕЛЬНОЙ ПЛОЩАДКИ	33
<i>Барлуков Н.И.</i> РЕМОНТ И РЕКОНСТРУКЦИЯ АВТОМОБИЛЬНЫХ ДОРОГ МЕТОДОМ ГЛУБОКОЙ ХОЛОДНОЙ РЕГЕНЕРАЦИИ С ПРИМЕНЕНИЕМ СТАБИЛИЗАЦИИ ГРУНТОВ	35
Кулижский М.С. ВИЗУАЛИЗАЦИЯ ОЧАГОВ ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ НА ПРИМЕРЕ ТУБЕРКУЛЁЗА	39
Челомбитько А.А. ОБОСНОВАНИЕ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ МОДИФИЦИРОВАННОГО КЛАДОЧНОГО РАСТВОРА	42
<i>Галаванова Ю.И.</i> КАК В БУДУЩЕМ БУДЕТ ВЫГЛЯДЕТЬ АВТОМАТИЗАЦИЯ СОСТАВЛЕНИЯ РАСПИСАНИЯ	44

ИСТОРИЧЕСКИЕ НАУКИ	48
Фролова А.С., Казьмин В.Н. СОЛЖЕНИЦИН И ПРОТЕСТНЫЕ ПРОЦЕССЫ ПЕРИОДА ПЕРЕСТРОЙКИ (К ЮБИЛЕЮ АВТОРА)	48
<i>Матюшонок Ф.Л.</i> ВОПРОСЫ ЕВРОПЕЙСКОЙ ПОЛИТИКИ В ПРЕДВЫБОРНЫХ ПРОГРАММАХ КОНСЕРВАТИВНОЙ ПАРТИИ ВЕЛИКОБРИТАНИИ В 1997-2015 ГГ	50
<i>Икрянова Д.В.</i> ОСОБЕННОСТИ АРХИВНОГО МЕНЕДЖМЕНТА В ГОСУДАРСТВЕННОМ АРХИВЕ	
ФИЛОСОФСКИЕ НАУКИ	56
<i>Тюкмаева А.М.</i> ВИВИСЕКЦИЯ СМЕХА. НЕЙРОФИЗИОЛОГИЧЕСКИЕ МЕТАМОРФОЗЫ	56
ФИЛОЛОГИЧЕСКИЕ НАУКИ	60
<i>Ермаков Д.С.</i> ПРОБЛЕМЫ МЕЖКУЛЬТУРНОГО ДИАЛОГА В КОНТЕКСТЕ ГРАЖДАНСКОЙ ПАРАДИГМЫ	60
ЮРИДИЧЕСКИЕ НАУКИ	63
Фролова А.С., Ерин В.В. МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО ПО ВОПРОСАМ ГЛОБАЛЬНОГО ПОТЕПЛЕНИЯ	
<i>Машковская Ю.Н.</i> К ВОПРОСУ О ЗАСЕКРЕЧИВАНИИ ПОТЕРЬ ЛИЧНОГО СОСТАВА МИНИСТЕРСТВА ОБОРОНЫ РФ В МИРНОЕ ВРЕМЯ	66
Зайнуллина Д.А. МЕЖДУНАРОДНЫЕ СТАНДАРТЫ ЗАЩИТЫ ПРАВ И СВОБОД ЧЕЛОВЕКА И ГРАЖДАНИНА	70
<i>Шульгина И.В.</i> СПЕЦИФИКА ВЫЯВЛЕНИЯ МОШЕННИЧЕСТВА	72
<i>Шульгина И.В.</i> ТАКТИКА ПРОИЗВОДСТВА СЛЕДСТВЕННЫХ ДЕЙСТВИЙ ПРИ РАССЛЕДОВАНИИ МОШЕННИЧЕСТВА	74
ПЕДАГОГИЧЕСКИЕ НАУКИ	77
Зотова И.В., Срядкова И.В. ПРЕДМЕТНО-СХЕМАТИЧЕСКИЕ МОДЕЛИ КАК СРЕДСТВО ФОРМИРОВАНИЯ НАВЫКОВ СЛОВООБРАЗОВАНИЯ У ДЕТЕЙ СТАРШЕГО ДОШКОЛЬНОГО ВОЗРАСТА	77
Зотова И.В., Бариева З.Р. ОСОБЕННОСТИ РАЗВИТИЯ ЛЕКСИЧЕСКОЙ СТОРОНЫ РЕЧИ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА	80
<i>Макарова Е.В.</i> РОЛЬ ЛИНГВИСТИЧЕСКОГО АНАЛИЗА ХУДОЖЕСТВЕННОГО ТЕКСТА ПРИ ПОДГОТОВКЕ К ЕДИНОМУ ГОСУДАРСТВЕННОМУ ЭКЗАМЕНУ ПО РУССКОМУ ЯЗЫКУ	84
МЕДИЦИНСКИЕ НАУКИ	87
Тищенко И.П., Тищенко Э.П. АКТУАЛЬНОСТЬ ПРОВЕДЕНИЯ ВАКЦИНОПРОФИЛАКТИКИ ПНЕВМОНИИ И ЕЕ ВЛИЯНИЕ НА ТЕЧЕНИЕ ЗАБОЛЕВАНИЯ В ЦЕЛОМ	87
ПСИХОЛОГИЧЕСКИЕ НАУКИ	
Андреева С.Н., Ендылетова Н.С. ОСОБЕННОСТИ САМОАКТУАЛИЗАЦИИ СОТРУДНИКОВ ВУЗА С РАЗЛИЧНЫМ ДОЛЖНОСТНЫМ СТАТУСОМ	90

Симакова М.Е., Льдокова Γ .М. ВОЗРАСТНЫЕ ОСОБЕННОСТИ СВОЙСТВ ВНИМАНИЯ МЛАДШИХ ШКОЛЬНИКОВ	93
<i>Шароватова Ж.Ф.</i> ВОЗРАСТНАЯ ДИНАМИКА САМООЦЕНКИ У УМСТВЕННО ОТСТАЛЫХ ДЕТЕЙ	96
Корчмарь Е.В. ПРОБЛЕМЫ СОЦИАЛИЗАЦИИ И АДАПТАЦИИ ЛИЦ С ОВЗ В УСЛОВИЯХ СОЦИАЛЬНОГО НЕРАВЕНСТВА СОВРЕМЕННОСТИ	98
СОЦИОЛОГИЧЕСКИЕ НАУКИ	101
Соколов С.С. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАЗВИТИИ ТЕРРИТОРИАЛЬНОГО УПРАВЛЕНИЯ	101
ПОЛИТИЧЕСКИЕ НАУКИ	105
Бурносова В.В., Солоха А.А., Бритикова Е.А. УСЛОВИЯ И ФАКТОРЫ КАЧЕСТВА УПРАВЛЕНЧЕСКИХ ГОСУДАРСТВЕННЫХ РЕШЕНИЙ	105