бликанское унитарное предприятие о-практический центр Национальной академии наук Беларуси по животноводству»

ЗООТЕХНИЧЕСКАЯ НАУКА БЕЛАРУСИ

Сборник научных трудов, посвященный 60-летию зоотехнической науки Беларуси

Tom 44

Часть 2

Жодино 2009

Республиканское унитарное предприятие «Научно-практический центр Национальной академии наук Беларуси по животноводству»

ЗООТЕХНИЧЕСКАЯ НАУКА БЕЛАРУСИ

Сборник научных трудов, посвященный 60-детию зоотехнической науки Беларуси

Том 44

Часть 2

Жодино
РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»
2009

УДК 636(476)(082) ББК 45/46(4Беи) 3-85

Редакционная коллегия:

И.П. Шейко — главный редактор, Н.В. Пилюк — зам. главного редактора, М.В. Джумкова — ответственный секретарь, М.В. Барановский, В.М. Голушко, А.С. Курак, И.С. Петрушко, С.А. Петрушко, В.Ф. Радчиков, А.Ф. Трофимов, Л.А. Федоренкова — члены редколлегии.

Рецензенты:

В.Ф. Радчиков, д-р с.-х. наук, проф. (РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»);

И.И. Горячев, д-р с.-х. наук, проф. (УО «Витебская ордена «Знак Почёта» государственная академия ветеринарной медицины»)

Зоотехническая наука Беларуси: сб. науч. тр., посвящ. 60летию зоотехнической науки Беларуси. Т. 44, ч. 2 / Научпрактический центр Нац. акад. наук Беларуси по животноводству; редкол.: И. П. Шейко (гл. ред.) [и др.]. — Жодино: Научпрактический центр НАН Беларуси по животноводству, 2009. — 268, [1] с.

В сборнике излагаются результаты экспериментальных исследований по кормлению и кормопроизводству, выполненных учёными Республиканского унитарного предприятия «Научно-практический центр Национальной академии наук Беларуси по животноводству» и других научных, учебных сельскохозяйственных организаций Беларуси и Украины. Книга предназначена для научных работников, преподавателей и студентов зоотехнических учреждений образования, руководителей и специалистов сельскохозяйственных организаций.

УДК 636(476)(082) ББК 45/46(4Бен)

 РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», 2009

В.О. ЛЕМЕШЕВСКИЙ

ВЛИЯНИЕ УРОВНЯ ЭНЕРГИИ В РАЦИОНЕ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА НА ПРОДУКТИВНОСТЬ И ПЕРЕВАРИМОСТЬ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ

РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству»

Введение. Обмен веществ и обмен энергии – это два взаимосвязанных, одновременно протекающих процесса. При распаде (диссимиляции) веществ выделяется энергия, которая расходуется в организме на синтез (ассимиляцию) специфических соединений и процессы жизнедеятельности. Сущность образования энергии состоит в освобождении электронов из атомов веществ и использовании их энергии для обеспечения химических процессов в клетках организма [1, 2, 3].

Обмен веществ и энергии в животном организме является интегральным показателем всех физиологических процессов. Все разнообразные формы жизнедеятельности организма животных тесно связаны с использованием энергии [1]. В результате биохимических реакций, происходящих в организме, образуется большое количество химической энергии, которая используется для поддержания функций жизненно важных органов и может превращаться в другие виды энергии. При этом сама энергия претерпевает качественные изменения: она превращается в другие формы – в движение, механическую работу, тепло и другие формы [2, 3].

Вся энергия, которую поставляет корм, называется валовой (ВЭ). Она соответствует тому количеству тепла, которое выделяется при сжигании этого корма. Ни одно животное не способно использовать полностью всю эту энергию: часть её выделяется с калом, часть выделяется с мочой и ферментативными газами (в основном, в виде СН₄), часть энергии используется на жевание, руминацию и транспорт корма по пищеварительному тракту. Остальная энергия (нетто-энергия (НЭ)) используется на поддержание жизни, молочную и мясную продуктивность и стельность. Энергия корма распределяется (%): валовая энергия – 100, переваримая энергия – 70, обменная энергия – 57 (в том числе 23 — на поддержание жизни, 14 — на продукцию и 20 на жевание, руминацию и транспорт корма по пищеварительному тракту) [2, 5].

Считается, что 18-19 % переваримой, или «исчезнувшей» в желудочно-кишечном тракте, энергии является недоступной для окисления в тканях. Исходя из этого, доступная для обмена энергия составляет 81-82 % переваримой энергии корма [4].

Биосинтез мяса по сравнению с биосинтезом молока в биологическом смысле является более напряжённым процессом. В среднем на биосинтез 1 г белка в молоке организму нужно принять с кормом 60 ккал энергии и 2,5 г переваримого протеина, а для биосинтеза 1 г белка в мясе животное (откармливаемый молодняк крупного рогатого скота живым весом 200 кг) должно принять с кормом энергии 180 ккал и 6,6 г переваримого протеина. Иными словами, для образования белка в мясе расходуется больше энергии в 3 раза, а переваримого протеина — в 2,6 раза [6].

Для животных главным органическим веществом, за счёт которого идёт теплообразование в организме, являются углеводы, затем белки (азотистые вещества). Теплообразование вследствие окисления углеводов составляет 60-87 %, а при окислении азотистых веществ – только 12-39 % к энергии общей теплопродукции за сутки [3].

Потребность организма в белках корма зависит и от таких питательных веществ, как жиры и углеводы. Эндогенный белковый катаболизм уменьшается, если все энергетические затраты организма восполняются полностью за счёт углеводов и жиров. Тем самым они заметно предупреждают распад белков организма [1].

Жир является основным резервом энергии в организме: при полном сгорании 1 г жира выделяется 38.9 кДж (9.3 ккал). Жиры в организме сельскохозяйственных животных составляют 10-20 % живой массы, а при откорме иногда достигают 30 % и более [1, 7].

Недостаточное знание потребностей животных в энергии и протеине, а также несовершенство имеющихся рекомендаций по кормлению молодняка чёрно-пёстрой породы приводят на практике к бесполезной потере значительной доли кормов и к общему снижению эффективности животноводства [8].

Наукой и практикой кормления установлено, что при балансировании рационов оценивается суммарное количество энергии, необходимое для покрытия энергетических процессов в организме. В целом уровень продуктивности животных на 80-90 % зависит от поступления обменной энергии и оптимального энерго-протеинового отношения и на 10-20 % от других факторов полноценного питания [9].

Целью работы стало определение влияния различного уровня энергии в рационах молодняка крупного рогатого скота в возрасте 6-12 месяцев на продуктивность, переваримость питательных веществ кормов и состояние здоровья животных с установлением оптимального уровня энерго-протеинового питания.

Материал и методика исследований. Для проведения научнохозяйственного опыта по определению влияния различного уровня энергии в рационах молодняка крупного рогатого скота в возрасте 6-12 месяцев на продуктивность, переваримость питательных веществ кормов и состояние здоровья животных и усовершенствованию нормы энерго-протеинового питания в РУП «Экспериментальная база «Жодино» Смолевичского района были подобраны три группы животных чёрно-пёстрой породы методом пар-аналогов.

Определение влияния разных уровней энерго-протеиновой обеспеченности молодняка крупного рогатого скота на переваримость и состояние здоровья осуществлялось в физиологическом опыте, проведённом на молодняке крупного рогатого скота чёрно-пёстрой породы в условиях физиологического корпуса РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству», для которого были сформированы четыре группы молодняка крупного рогатого в возрасте 6-7 месяцев методом пар-аналогов (рисунок 1).

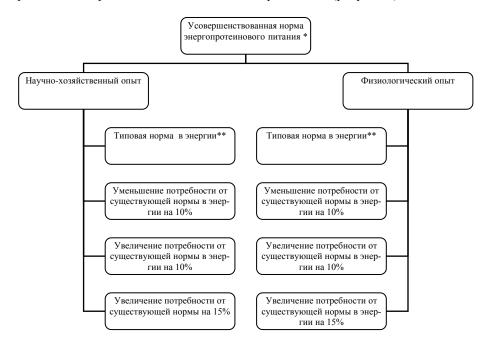


Рисунок 1 – Схема исследований

Примечание: * в физиологическом и научно-хозяйственном опытах в опытных группах производилось нормирование и по расщепляемому и нерасщепляемому протеину в рационе (норма определена опытным путём в ранее проведённых нами исследованиях); ** типовая потребность в энергии устанавливалась на основании норм кормления [10].

Увеличение энергии в рационе осуществлялось путём включения в состав комбикорма энергетической добавки на основе стабилизированного от распада в рубце жира, содержащей в 1 кг 30,14 МДж обменной энергии, что даже при незначительном включении её в рацион ощутимо повышает его энергетическую питательность.

В процессе опыта изучалась поедаемость путём проведения контрольных взвешиваний заданных кормов и их остатков перед утренней раздачей один раз в десять дней в два смежных дня, в балансовом – путём ежедневного учёта заданных кормов и их остатков перед утренней раздачей.

Нормы потребности в энергии определялись при продуктивности 1000 г прироста живой массы в сутки.

Основными кормами рациона в балансовом опыте были силос кукурузный и комбикорм, в котором регулировалось содержание обменной энергии и расщепляемость протеина путём включения части зерносмеси, входящей в состав комбикорма после экструдирования.

Для определения переваримости питательных веществ кормов рационов определялось количество и химический анализ продуктов обмена (кал, моча), по разности между потреблением питательных веществ в кормах и выделением продуктов обмена рассчитывались коэффициенты переваримости.

Продуктивность животных в научно-хозяйственном опыте определялась на основании проведённых контрольных взвешиваний молодняка крупного рогатого скота ежемесячно.

Химический анализ состава кормов, применяемых в опыте, проведён в лаборатории качества продуктов животноводства и кормов РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству». В кормах определяли первоначальную, гигроскопичную и общую влагу, сухое вещество, жир, протеин, клетчатку, золу, кальций, фосфор, и другие макро- и микроэлементы, каротин, аминокислоты.

Для определения содержания в исследуемых кормах расщепляемого и нерасщепляемого протеина в условиях физиологического корпуса РУП «Научно-практический центр Национальной академии наук Беларуси по животноводству» на бычках, которым в рубец были вживлены хронические фистулы, проводили опыты in vivo в полном соответствии с методикой выполнения данных опытов [12]. Уровень кормления животных был поддерживающим, чтобы животные находились в хорошем состоянии, но не давали прироста. Кормление двухразовое, с минимальным интервалом 8 часов. Содержание сырого протеина в рационе составляло 130 г/кг сухого вещества. Инкубирование образцов производили на трёх бычках.

Для контроля за физиологическим состоянием животных и каче-

ством протекающих в организме обменных процессов отбирались образцы крови и исследованы её показатели.

В крови определены: эритроциты и гемоглобин – фотокалориметрически по методике Воробьёва (в цельной крови), щелочной резерв – по Неводову, общий белок – рефрактометрическим способом, сахар – ортотолуидиновым методом, кальций – комплексометрическим титрованием, фосфор – по Бригсу, мочевину – диацетилмоноаксимным методом, каротин – фотоэлектрокалориметрически (в сыворотке).

Полученные результаты обработаны методом биометрической статистики по Рокицкому П.Ф. (1973) и Плохинскому Н.А. (1969). Разница между группами считается достоверной при уровне значимости P<0.05.

Результаты эксперимента и их обсуждение. Среднесуточный рацион молодняка крупного рогатого скота в возрасте с 6 до 12 месяцев представлен, в основном, силосом кукурузным (от 34,22 % в контроле до 28,50 % в III опытной группе). Отмечено увеличение в структуре в том же порядке доли комбикорма от 44,43 % в I контрольной до 50,32% в III группе. В основном все изменения — из-за незначительного снижения потребления силоса в опытных группах (таблица 1).

Таблица 1 – Среднесуточный рацион молодняка крупного рогатого скота в возрасте от 6 до12 мес. (по фактически съеденным кормам)

	Группы							
Показатели	I		П		III		IV	
	КГ	%	КГ	%	ΚΓ	%	ΚΓ	%
Силос кукурузный	12,93	34,22	11,84	31,82	10,74	28,50	12,4	30,7
Сенаж злаково-								
бобовый	3,66	18,36	3,50	17,84	3,37	16,96	3,6	16,8
Комбикорм КР-3	2,90	44,43	2,92	46,20	2,91	50,32	2,9	48,6
Шрот подсолнечнико-								
вый	0,21	2,99	0,28	4,13	0,29	4,21	0,3	3,8
	В ра	ционе	содера	кится:				
кормовые единицы	7,	18	7,	07	7,	16	7,0	68
обменная энергия,								
МДж	71,88		70	,89	71.	,97	77	',0
сухое вещество, г	7909		76	20	7370		7833	
сырой протеин, г	994		99	93	96	55	97	73
переваримый протеин,								
Γ	689		699		684		678	
расщепляемый проте-								
ин, г	727		64	14	62	25	63	33

Продолжение таблицы 1

1	2	3	4	5
нерасщепляемый про-				
теин, г	267	349	340	340
соотношение РП:НРП	73:27	65:35	65:35	65:35
расщепляемого про-				
теина на 1 МДж ОЭ	10	9	9	8
нерасщепляемого				
протеина на 1 МДж				
ОЭ	3,7	4,9	5,0	4,4
переваримого протеи-				
на на 1 МДж ОЭ, г	9,5	9,8	10,0	8,8
переваримого протеи-				
на на 1 к. ед., г	96	98	101	88
Отношение кальция к				
фосфору	1,6:1	1,6:1	1,5:1	2,3:1
Концентрация обмен-				
ной энергии в 1 кг СВ	9,1	9,3	9,4	9,8
Сахаропротеиновое				
отношение	0,8:1	0,95:1	0,96:1	0,95:1
Стоимость, руб.	1849	1957	1834	2707

Большее потребление обменной энергии отмечено в III группе. Однако за весь период выращивания заметных расхождений по этому показателю не установлено.

Сухое вещество в этот период потреблялось на 1 голову в пределах 7910 г в контрольной и снижалось к III группе до 7370 г на голову в сутки. В результате в III группе произошло незначительное снижение (на 2,9 %) потребления сырого протеина по сравнению с контрольной группой, а по сравнению со II опытной на 2,8 % снизилось потребление расщепляемого и нерасщепляемого протеина. Наибольшее потребление энергии рациона установлено в IV опытной группе, составившее 77 МДж, что на 6,11 МДж больше показателя II группы. Содержание переваримого протеина в рационе практически находилось на одинаковом уровне между группами, на 1 МДж обменной энергии больше всего его приходилось в III группе (10 г), меньший показатель – в IV (8,8 г). Концентрация обменной энергии в 1 кг сухого вещества рациона повышалась от 9,1 МДж в I контрольной до 9,8 МДж в IV опытной группе.

Исследование гематологических показателей подопытных животных показало (таблица 2), что по содержанию гемоглобина в крови лучший результат отмечен у животных контрольной группы, полу-

чавшей в составе рациона комбикорм без включения энергетической добавки и с пониженным содержанием нерасщепляемого протеина, составивший 92 г/л против 90,3 во II опытной и 91,3 в III опытной. Однако по содержанию эритроцитов установлена иная закономерность: наибольшее их количество выявлено во II опытной -6,03 млн./мл, или на 0,55-0,58 выше остальных.

Таблица 2 – Показатели крови

	Группы				
Показатели	I контроль-	II опытная	III опытная	IV опытная	
	ная				
Гемоглобин, г/л	92±0,17	90,3±0,49	91,3±0,13	90,7±0,23	
Эритроциты, млн./мл	$5,48\pm0,30$	6,03±0,513	$5,45\pm0,22$	5,73±0,50	
Лейкоциты, тыс./мл	16,23±2,00	12,83±1,74	$13,3\pm0,64$	16,07±1,91	
Общий белок, г/л	68,57±3,88	69,33±0,82	69,93±2,48	68,5±3,53	
Глюкоза, ммоль/л	$6,07\pm0,21$	$6,23\pm0,07$	$6,13\pm0,18$	6,03±0,14	
Мочевина, ммоль/л	$2,6\pm0,41$	$2,33\pm0,28$	$2,33\pm0,07$	2,77±0,18	
Фосфор, ммоль/л	$1,77\pm0,10$	$1,72\pm0,02$	$1,66\pm0,02$	$1,76\pm0,07$	
Альбумины, г/л	33,8±1,67	$34,7\pm0,95$	34,4±1,01	33,4±1,57	
Глобулины, г/л	$34,8\pm2,25$	$34,5\pm0,15$	$35,5\pm1,62$	35,07±1,97	
Магний, ммоль/л	$1,22\pm0,10$	$1,28\pm0,06$	$1,30\pm0,02$	$1,24\pm0,11$	
Железо, ммоль/л	11,27±0,49	15,77±0,64	$10,9\pm0,21$	13,27±1,87	
Холестерин, ммоль/л	2,3±0,21	1,7±0,089	1,9±0,23	1,97±0,12	

Содержание общего белка больше в опытных группах – 69,3-69,9 против 68,6 г/л в контрольной, на уровне только в IV опытной, получавшей в рационе большую долю энергетической добавки, нежели остальные. Больше в крови опытных животных отмечено и глюкозы. Одним из показателей использования белка в организме является мочевина, содержание которой на 10,4 % было выше в крови контрольных животных, чем у II и III опытных, что, несомненно, говорит о лучшем использовании протеина и энергии корма опытными животными. В IV опытной этот показатель оказался на 6,5 % выше контроля, что указывает на нерациональное использование энергии корма. Содержание кальция в крови контрольных животных было несколько большим, однако эта разница недостоверна.

Колебаний по содержанию альбуминов и глобулинов в крови подопытных животных не обнаружено. Не установлено также достоверных различий и по содержанию таких элементов, как магний и железо. Отмечено небольшое снижение содержания холестерина в крови опытных животных, однако разность недостоверна.

Основным показателем определения качества скармливаемых рационов является продуктивность молодняка крупного рогатого скота,

выраженная приростами живой массы.

Из данных таблицы 3 видно, что постановочная живая масса молодняка крупного рогатого скота в возрасте 6 месяцев находилась в пределах 173-175 кг. Иными словами, разность между ними не превысила 1,1 %. К концу опыта живая масса животных имела значительные различия. В результате за 6 месяцев животные контрольной группы приросли на 180 кг, II опытной – на 188,8, III опытной – на 189,2, IV – на 181,1 кг. В результате среднесуточный прирост составил соответственно 998 г, 1049, 1051 и 1006 г, соответственно, при затратах кормов на 1 кг прироста 7,19, 6,93, 6,83 и 7,63 кормовых единиц. В результате энергия прироста молодняка составила от 16 МДж в контрольной группе до 17,29-17,36 МДж (наилучшие результаты) соответственно во II и III опытных группах, что подтверждает максимально эффективное использование питательных веществ рационов животными. Увеличение уровня энергетического питания не оказало существенного влияния на продуктивность. Напротив, конверсия энергии в прирост снизилась по отношению к контрольной на 1,2 %, в результате затраты обменной энергии на 1 МДж в приросте составили 4,74 МДж, или снизились соответственно на 0,25, 0,64, 0,59 МДж по отношению к I, II и III подопытным группам.

Таблица 3 – Живая масса и продуктивность животных

	Группы				
Показатели	I контроль-	II опытная	III опытная	IV опытная	
	ная				
Живая масса в начале опыта,					
кг	173,3±1,03	174,9±1,26	172,7±1,07	174,1±1,40	
Живая масса в конце опыта,					
кг	$353\pm2,00$	363,7±1,19	361,9±1,68	355,2±1,81	
Валовой прирост, кг	179,7±1,60	188,8±5,06	189,2±1,80	181,1±1,88	
Среднесуточный прирост, г	$998\pm 8,92$	1049±28,14	1051±10	1006±10,49	
Затраты кормов на 1 кг при-					
роста, корм. ед.	7,19	6,93	6,83	7,63	
Энергия прироста, МДж	16,00	17,29	17,36	16,22	
Конверсия энергии рациона в					
прирост живой массы, %	22,26	24,39	24,12	21,06	
Затраты обменной энергии на					
1 МДж в приросте живой					
массы, МДж	4,49	4,10	4,15	4,74	

Проведённый физиологический опыт по определению переваримости питательных веществ рационов с различным уровнем обменной энергии показал, лучшая переваримость сухого вещества рационов

отмечена у животных, получавших в составе рациона комбикорм с пониженным содержанием расщепляемого протеина и повышением энергии в рационе на 10 %, – около 70 % против 66 в контрольной и 68,4 % во II и IV опытных группах (таблица 4).

Таблица 4 – Коэффициенты переваримости, %

	Группы				
Показатели	I кон-	II опытная	III опытная	IV опытная	
	трольная				
Сухое вещество	66,1±2,4	68,4±1,7	69,8±2,1	68,4±1,8	
Органическое вещество	$67,6\pm2,5$	69,5±1,7	70,8±1,9	69,5±1,9	
БЭВ	$77,8\pm1,9$	79,1±1,3	80,1±1,0	79,3±1,3	
Жир	$59,9\pm1,8$	$73,4\pm4,8$	$73,9\pm2,1$	$78,4\pm2,5$	
Протеин	$50,5\pm3,0$	$50,6\pm2,1$	$50,2\pm4,9$	51,1±2,9	
Клетчатка	$43,3\pm4,1$	44,1±2,7	$47,2\pm3,3$	41,2±4,6	

По переваримости органического вещества также сохранилась тенденция, отмеченная по сухому веществу. Заметное увеличение переваримости жира у опытных групп, составившее 73-78 % против 60 % в контрольной группе. Переваримость протеина между группами находилась на одинаковом уровне. Наилучший показатель переваримости клетчатки (47 %) отмечен в группе при повышении обменной энергии на 10 %, или на 3-6 % выше, чем у остальных групп.

Заключение. В результате проведённого научно-хозяйственного опыта на молодняке крупного рогатого скота при выращивании его на мясо в возрасте 6-12 мес. с использованием в рационе различного уровня энергии установлено, что незначительное увеличении энергетического питания бычков при нормировании рационов по расщепляемому и нерасщепляемому протеину (соотношение в рационе составило соответственно 65:35 %) с концентрацией энергии в 1 кг сухого вещества рациона 9,3-9,4 МДж позволило получить 1049-1051 г прироста в сутки при затратах кормов 6,93-6,83 к. ед., или на 3,6-5,0 % ниже контрольной группы. Энергия прироста при таком уровне кормления составила 17,3-17,4 МДж, конверсия энергии в прирост составила соответственно 24,39 и 24,12 %, или на 2,13 и 1,86 % выше контроля. Скармливание рационов с таким уровнем энергии позволило повысить переваримость сухого вещества на 4 % и органического – на 3, БЭВ – на 2, жира – на 14, клетчатки – на 4 %.

Литература

1. Физиология сельскохозяйственных животных / под ред. А. Н. Голикова, Г. В. Паршутина. – 2-е изд., перераб. и доп. – М. : Колос, 1980. - 320 с.

- 2. Ковзов, В. В. Особенности обмена веществ у высокопродуктивных коров : практ. пособие / В. В. Ковзов. Витебск : УО ВГАВМ, 2007. 161 с.
- 3. Демченко, П. В. Биологические закономерности повышения продуктивности животных / П. В. Демченко. М. : Колос, 1972. 295 с.
- 4. Баканов, В. Н. Кормление сельскохозяйственных животных / В. Н. Баканов, В. К. Менькин М.: Агропромиздат, 1989. 511 с.
- 5. Энергетическая ценность концентрированных кормов в показателях чистой энергии лактации / И. И. Горячев [и др.] // Актуальные проблемы интенсивного развития животноводства : сб. науч. тр. Горки : БГСХА, 2008. Вып. 10, ч. 1. С. 8-15.
- 6. Таранов, М. Т. Биохимия и продуктивность животных / М. Т. Таранов. М. : Колос, 1976. 342 с.
- 7. Татаркина, Н. И. Кормление мясного скота / Н. И. Татаркина // Кормление сельскохозяйственных животных и кормопроизводство. 2008. № 1. С. 19-22.
- 8. Коростелёв, А. О нормах кормления бычков при интенсивном выращивании и откорме / А. Коростелёв // Молочное и мясное скотоводство. 2007. № 1. С. 15-17.
- 9. Ишмуратов, Х. Использование обменной энергии в рационах бычков / Х. Ишмуратов, В. Косолапов, В. Косолапова // Молочное и мясное скотоводство. 2006. № 5. С. 25-26.
- 10. Нормы и рационы кормления сельскохозяйственных животных : справ. пособие / А. П. Калашникова [и др.]. 3-е изд., перераб. и доп. М., 2003. 456 с.
- 11. Определение растворимости и распадаемости протеина кормов : мет. указания / В. В. Турчинский [и др.]. Боровск, 1987. 13 с.

(поступила 19.02.2009 г.)

СОДЕРЖАНИЕ

ТЕХНОЛОГИЯ КОРМОВ И КОРМЛЕНИЯ, ПРОДУКТИВНОСТЬ

Аверин В.С., Царенок А.А., Яночкин И.В., Ненашев Р.А., Андруш С.Н.	
Нормирование содержания 90 Sr в рационах крупного рогатого скота при	
производстве говядины на загрязнённых радионуклидами территориях	3
Балабушко В.В. Эффективность скармливания заменителя цельного	
молока телятам	10
Балабушко В.В., Шагов П.Н., Пилюк Н.В. Заменители цельного молока	
из местного сырья в рационах телят	18
Волков Л.В., Яцко Н.А., Цай В.П., Шорец Р.Д., Шевцов А.Н. Показате-	
ли рубцового пищеварения, переваримость и использование энергии	
корма бычками при разной структуре рационов	25
Гурин В.К., Радчиков В.Ф., Букас В.В., Люндышев В.А., Будько В.М.	
Комбикорм КР-1 с селенитом натрия при выращивании бычков на мясо	35
Добрук Е.А., Пестис В.К., Сарнацкая Р.Р., Тарас А.М., Фролова Л.М.,	
Жукова О.Е. Эффективность использования БМВД на основе местного	
ырья в рационах молодняка крупного рогатого скота	44
аяц В.Н., Кветковская А.В., Голушко О.Г., Надаринская М.А., Новик	
І.В. Показатели воспроизводительной способности и резистентости у	
ысокопродуктивных коров при скармливании «Вип-продукт И-	
CAK ¹⁰²⁶))	52
Іаяц В.Н., Кветковская А.В., Голушко О.Г., Надаринская М.А., Руколь	
С.А. Дрожжи в подержании антиоксидантного гомеостаза при кормле-	
ни высокопрдуктивных стельных коров в сухостойный период	60
Азмайлович И.Б., Якимович Н.Н. Новая аминокислотная кормовая до-	
завка в рационах сельскохозяйственной птицы	67
Капитонова Е.А. Введение в рацион цыплят-бройлеров пробиотика	
Диалакт»	75
Ковалевская Ю.Ю. Пищеварение в рубце и использование питательных	
веществ бычками при скармливании рационов с разным качеством про-	
геина	85
Копылович В.Л. Влияние приёмов агротехники на урожайность и каче-	
ство пожнивных крестоцветных культур	94
Копылович В.Л. Использование промежуточных культур в кормопро-	
взводстве	102
Кот А.Н., Радчиков В.Ф., Козинец А.И., Пилюк Н.В. Влияние концен-	
грации обменной энергии в кормах на эффективность её использования	
в организме крупного рогатого скота	111
Крыштон Т.Г., Гурин В.К., Яцко Н.А. Интенсивность роста и показате-	
ли спермопродукции ремонтных бычков в зависимости от качества	
протенна в рационе	120

Куртина В.Н. Морфо-биохимический состав крови и переваримость	
питательных веществ при использовании зерна рапса и люпина в корм-	
лении ремонтных тёлок	127
Лемешевский В.О. Влияние уровня энергии в рационе молодняка круп-	
ного рогатого скота на продуктивность и переваримость питательных	
веществ	136
Передня В.И., Пилюк С.Н. Технологический процесс приготовления	
влажных кормовых смесей для бычков	145
Пилюк С.Н. Использование в рационах бычков влажных кормовых	
смесей	154
Радчиков В.Ф., Козинец А.И., Акулич В.И., Кот А.Н., Ракецкий П.П.	
Переваримость и использование питательных веществ при скармлива-	
нии бычкам влажного зерна, заготовленного с консервантами Кормоп-	
люс	165
Радчиков В.Ф., Пентилюк С.И., Гурин В.К., Яночкин И.В., Сучкова	
И.В. Использование энергии рационов бычками при скармливании	
комбинированных силосов	173
Радчикова Г.Н., Киреенко Н.В., Возмитель Л.А. Гурина Д.В., Карелин	
В.В. Использование добавки «Бевитал» в кормлении коров	182
Радчикова Г.Н., Шарейко Н.А., Сергучёв С.В., Гасанов Ф.А., Гурина	
Д.В. Новая жировая добавка в рационах коров	190
Садомов Н.А., Шамсуддин Л.А. Кормовая добавка «Ватер трит ® жид-	
кий» для повышения продуктивности свиней на откорме	197
Саханчук А.И., Каллаур М.Г., Дедковский В.А., Кирикович С.А., Бура-	
кевич Т.А., Горячева Е.В. Совершенствование минерально-	
витаминного питания высокопродуктивных коров в основном цикле	
лактации в зимний период	204
Сидоренко Р.П., Ситько В.А., Корнеев А.В. Убойные и мясные качества	
свиней при введении в их рацион карнитина	212
Славов В.П. Кормовые ресурсы в устойчивом развитии сельского хо-	
зяйства Украины	220
Сурмач В.Н., Ковалевский В.Ф., Сехин А.А., Жукова О.Е. Подкисли-	
тель «Вевовиталь» в комбикормах для молодняка свиней на выращива-	
нии	228
Цай В.П., Лемешевский В.О., Карелин В.В., Ганущенко О.Ф. Уровень	* *
энергии в рационах молодняка крупного рогатого скота и его влияние	
на продуктивность	237
Яночкин И.В., Царенок А.А., Исаченко С.А., Андруш С. Н. Рациональ-	
ное использование пойменных и суходольных естественных пастбищ;	
загрязнённых ¹³⁷ Cs, при нагуле лошадей	248
SUMMARY	252

Научное издание

ЗООТЕХНИЧЕСКАЯ НАУКА БЕЛАРУСИ

Сборник научных трудов Том 44 Часть 2

Ответственный за выпуск, редактор, вёрстка Переводчик

М.В. Джумкова А.В. Власик

Подписано в печать 01.09.09 г. Формат 60 х 84/16. Бумага офсетная. Гарнитура Таймс, Печать Riso. Усл.-печ. л. 21,69. Уч.-изд. л. 20,98. Тираж 200 экз. Заказ № 7664.

Издатель — Республиканское унитарное предприятие «Научнопрактический центр Национальной академии наук Беларуси по животноводству».

ЛИ № 02330/0131889 от 31 декабря 2004 г. 222160, Минская обл., г. Жодино, ул. Фрунзе, 11.

Отпечатано с оригинал-макета Заказчика в МОУП «Борисовская укрупнённая типография им. 1 Мая».

ЛП № 02330/0150443 от 19.12.08 г. 222120, г. Борисов, ул. Строителей, 33.