ОСОБЕННОСТИ НАКОПЛЕНИЯ БИОМАССЫ ХЛОРЕЛЛОЙ В ПРИСУТСТВИИ ХЛОРИЛА КАЛМИЯ В СРЕЛЕ КУЛЬТИВИРОВАНИЯ

И.А. Ковальчук, 3 курс Научный руководитель — **И.А. Ильючик**, к.б.н., доцент **Полесский государственный университет**

Хлорелла (Chlorella vulgaris) является одной из наиболее широко распространенных зеленых микроводорослей, встречающихся в большинстве водных сред мира и часто используется в тестах на токсичность из-за чувствительности к различным загрязнителям, относительно короткого жизненного цикла и простоты обращения [1].

Выживание зеленых водорослей в водной среде, загрязненной металлами, зависит от их способности генерировать и передавать сигналы, регулирующие метаболизм. *Ch. vulgaris* обладает высокой способностью адаптироваться к окружающей среде.

Широкое использование микроводорослей в сельском хозяйстве, очистке сточных вод, производстве фармацевтических препаратов и биодобавок, биотоплива требует детального изучения воздействия различных эффекторов на накопление биомассы этих водорослей [2].

Кадмий — один из наиболее токсичных тяжелых металлов. Он поступает в водную среду в результате промышленной деятельности человека и в ходе природных процессов [3], способен взаимодействовать с различными структурами клетки и вызывать большое количество негативных биохимических сдвигов: от ингибирования активности ферментов до повреждения мембранных структур клетки [4].

Токсичность кадмия у фотосинтезирующих организмов проявляется в задержке роста, хлорозе, генотоксичности и фотосинтеза [5]. Известно, что хлорелла обладает высокой устойчивостью к кадмию [6] и к другим тяжелым металлам, например, к свинцу, марганцу, железу, хрому, меди [2, 7].

Цель работы — выявить влияние $CdCl_2$ различной концентрации на динамику накопления биомассы культурой *Chlorella vulgaris*.

Исследования выполнены на альгологически чистой культуре *Ch. vulgaris*, штамм С 111 IBCE C-19 из коллекции водорослей Института биофизики и клеточной инженерии НАН Беларуси.

Микроводоросль выращивали на среде $A5\Pi$ [8] в прозрачных сосудах объемом 0,2 л при температуре 26 ± 2 °C, освещенности на поверхности сосуда 5000 лK, продолжительности световой и темновой фазы – 12 ч/12 ч.

В среду культивирования дополнительно вносили $CdCl_2$. Концентрация ионов Cd^{2+} в среде культивирования составляла: 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} М. В качестве контроля использовали оригинальную среду A5П без добавления солей кадмия. Биомассу *Ch. vulgaris* определяли на 1, 4, 7, 10, 13, 17, 20-е сутки культивирования, используя камеру Горяева. Исходное количество клеток в экспериментальных вариантах – 2,17 млн/мл.

Исследования проведены девятикратно. Полученные результаты обработаны статистически с использованием программы MS Excel 2010. Достоверность различий между вариантами определяли по t-коэффициенту Стьюдента для уровня значимости $P \le 0.05$.

В течение 20-и суток культивирования наблюдалось изменение биомассы хлореллы как в контроле, так и в среде с добавлением соли кадмия (таблица).

Таблица – Динамика роста культуры *Chlorella vulgaris* при добавлении в питательную среду хлорида кадмия (n=9)

Концентрация Cd ²⁺ , М	Биомасса млн клеток/мл			
	1-е сутки	4-е сутки	7-е сутки	10-е сутки
Контроль	$2,14 \pm 0,11$	$2,54 \pm 0,11$	$3,92 \pm 0,16$	$3,39 \pm 0,12$
10 ⁻⁸	$2,37 \pm 0,11$	$2,73 \pm 0,10$	$3,15 \pm 0,7*$	$3,98 \pm 0,25$
10-7	$2,51 \pm 0,13$	$2,89 \pm 0,12$	$3,28 \pm 0,15*$	$4,28 \pm 0,37*$
10 ⁻⁶	$2,41 \pm 0,09$	$2,60 \pm 0,09$	$4,95 \pm 0,13*$	$4,73 \pm 0,17*$
10 ⁻⁵	$2,67 \pm 0,11$	$2,28 \pm 0,08$	$3,26 \pm 0,18*$	$4,59 \pm 0,34*$
Концентрация Cd ²⁺ , М	13-е сутки	17-е сутки	20-е сутки	
Контроль	$3,04 \pm 0,13$	$3,71 \pm 0,26$	$4,78 \pm 0,09$	
10-8	$3,79 \pm 0,12*$	$4,38 \pm 0,24$	5,66 ± 0,11*	
10-7	4,1 ± 0,12*	$4,86 \pm 0,67$	$4,63 \pm 0,68$	
10 ⁻⁶	$5,96 \pm 0,08*$	$6,37 \pm 0,21*$	$7,89 \pm 0,12*$	
10 ⁻⁵	$2,88 \pm 0,11$	$2,27 \pm 0,09*$	$2,26 \pm 0,09*$	

Примечание: * – изменения статистически достоверны при Р ≤ 0,05

В контроле наблюдался линейный рост культуры практически до конца эксперимента, в сравнении с 1-ми сутками увеличение биомассы составило 2,2 раза, и лишь в период 10–13 суток был незначительный спад (рисунок).

Во всех вариантах с использованием кадмия происходило практически линейное увеличение биомассы. К 20-м суткам в них концентрация клеток хлореллы увеличилась в 1,8-3,3 раза, кроме варианта 10^{-5} М (-15,4%), в сравнении с 1-ми сутками (таблица, рисунок).

Максимальный прирост биомассы *Ch. vulgaris* наблюдался в средах с концентрацией хлорида кадмия: 10^{-7} M — на 1-е сутки, что в 1,17 раза больше контроля; 10^{-8} M — на 4-е сутки, что в 2,14 раза больше контроля; 10^{-6} M — на 7, 10, 13, 17 и 20-е сутки, что в 1,26, 1,39, 1,96, 1,72 и 1,65 раза больше контроля соответственно.

Следует отметить, что в среде с концентрацией кадмия 10^{-5} М максимальный прирост биомассы наблюдался на 10-е сутки, что в 1,7 раз больше относительно 1-х суток. В период 13–20 сутки, в данном варианте, рост хлореллы снизился практически в 2,0 раза по сравнению с 10-ми сутками.

В варианте с концентрацией кадмия 10^{-7} М на 17-е сутки прирост биомассы был в 1,3 раз больше контроля и в 1,3 раз меньше относительно среды с концентрацией Cd^{2+} 10^{-6} М на 7, 10, 13, 17 и 20-е сутки (рисунок).

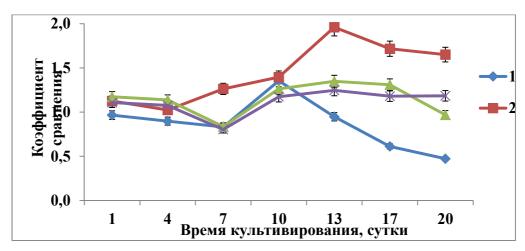


Рисунок 2. – Изменения накопления биомассы культурой *Chlorella vulgaris* относительно контроля при добавлении в питательную среду хлорида кадмия (M): $1-10^{-5}$, $2-10^{-6}$, $3-10^{-7}$, $4-10^{-8}$

Изложенные результаты показывают, что ионы кадмия оказывают значительное влияние на рост культуры Ch. vulgaris. В присутствии $CdCl_2$ концентрацией 10^{-5} М происходит угнетение накопления биомассы после 10-х суток культивирования. Невысокие концентрации кадмия, особенно при 10^{-6} М, стимулируют рост хлореллы.

Список использованных источников

- 1. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals / U.N. Rai , N.K. Singh, A.K. Upadhyay, S. Verma // Bioresource technology. $-2013.-Vol.\ 136-P.\ 604-609.$
- 2. Ильючик, И.А. Влияние сульфата железа (III) на динамику роста культуры Chlorella vulgaris / И.А. Ильючик, А.А. Шульган, В.Н. Никандров // Современные проблемы естествознания в науке и образовательном процессе: сборник статей Междунар. науч.-практ. конф., Минск, 23 ноября 2023 г. / Белорусский гос. пед. ун-т им. М. Танка; редкол.: Н.С. Сологуб [и др.]; отв. ред. Н.С. Сологуб. Минск: БГПУ, 2024. С. 611–615
- 3. Andresen, E. Cadmium toxicity in plants / E. Andresen, H. Küpper // Met. Ions Life Sci. 2013. V. 11. P. 395.
- 4. Uncommon heavy metals, metalloids and their plant toxicity/ P. Babula, V. Adam, R. Opatrilova, J. Zehnalek, L. Havel, R. Kizek // Environ. Chem. Lett. 2008. –V. 6. P. 189.
- 5. Влияние ионов кадмия на некоторые биофизические параметры и ультраструктуру клеток Ankistrodesmus sp. B-11 / Б.К. Заядан, А.К. Садвакасова, Д.Н. Маторин [и др.] // Физиология растений. 2020. Т. 67, № 5. С. 501-511.
- 6. Cheng, J. The effect of cadmium on the growth and antioxidant response for freshwater algae *Chlorella vulgaris* / J. Cheng, H. Qiu, Z. Chang, Z. Jiang, W. Yin // Springerplus. 2016. №5 (1).
- 7. Antonio León-Vaz Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation / Antonio León-Vaz, Rosa León, Inmaculada Giráldez, José María Vega, Javier Vigara // Aquatic toxicology (Amsterdam, Netherlands). 2021. Vol. 239.
- 8. Упитис, В.В. Макро- и микроэлементы в оптимизации минерального питания микроводорослей / В.В. Упитис. Рига: Зинатне, 1983. 240 с.