ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ И МИКРОБИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ТВОРОГА В ТЕЧЕНИЕ СРОКА ХРАНЕНИЯ

Д.С. Маслова, магистрант Научный руководитель — О.Н. Жук, к.б.н. Полесский государственный университет

Введение. Творог – традиционный белковый кисломолочный продукт. Творог изготавливается из цельного, нормализованного или обезжиренного пастеризованного молока, путем сквашивания закваской, приготовленной на чистый культурах молочнокислых бактерий, и отделением сыворотки от сгустка [2].

Большое значение при выработке творога имеет вносимая закваска, содержащая микроорганизмы, которые способствуют процессу ферментации молока, в результате чего формируются органолептические, физико-химические и микробиологические показатели готового продукта [1].

Цель работы – исследовать изменение физико-химических и микробиологических показателей творога в течение срока хранения.

Материалы и методы. Исследование проводилось на базе производственной лаборатории ОАО «Брестское мороженое». Объектом исследования являлись 4 образца творога массовой долей жира 6%.

Исследования проводились в соответствии с: СТБ 315-2017 «Творог. Технические условия»; ГОСТ 3626-73 «Молоко и молочные продукты. Методы определения массовой доли влаги и сухого вещества»; ГОСТ 3624-92 «Молоко и молочные продукты. Титриметрические методы определения кислотности»»; ГОСТ 10444.11-89 «Продукты пищевые. Методы определения молочнокислых микроорганизмов».

Результаты исследования. В ходе исследования изучалось содержание молочнокислых микроорганизмов в свежем твороге и в твороге на конечном сроке (на девятые сутки). Для определения количества молочнокислых микроорганизмов в образцах творога были выбраны разведения 10^6 - 10^8 . Результаты исследования молочнокислых микроорганизмов в свежем твороге приведены в таблице 1.

Таблица 1. –	Количество молочнокислых	х микроорганизмов в	свежем твороге

Показатель		Нормативное требование (ГОСТ 10444.11-89)			
	Образец №1	Образец №2	Образец №3	Образец №4	
Молочнокислые микроорганизмы, (КОЕ/г)	25,0 ·10 ⁶	20,0 ·10 ⁶	20,0 ·10 ⁶	13,6 ·10 ⁶	Не менее 1·10 ⁶

Результаты исследования молочнокислых микроорганизмов в твороге на конечном сроке приведены в таблице 2.

По результатам исследования можно сделать вывод, что к концу срока хранения количество молочнокислых микроорганизмов в твороге снижается.

В ходе физико-химического анализа определялись такие показатели как титруемая кислотность и массовая доля влаги. Результаты исследования титруемой кислотности представлены в таблице 3.

Таблица 2. – Количество молочнокислых микроорганизмов в твороге в конце срока хранения

Показатель		Твор	Нормативное требование (ГОСТ 10444.11-89)		
	Образец №1	Образец №2	Образец №3	Образец №4	
Молочнокислые микроорганизмы, (КОЕ/г)	20,0 ·10 ⁶	13,6 ·10 ⁶	6,0 ·10 ⁶	6,0 ·10 ⁶	Не менее 1·10 ⁶

Таблица 3. – Результаты определения титруемой кислотности образцов творога

	Нормативное	ец	Срок хранения, сутки				
Показатель	требование (СТБ 315- 2017)	Образе	Свежий	3	6	9	
Титруемая кислотность, °T	Не более 230,00	№ 1	169,60± 3,38	$174,80 \pm 3,43$	185,40± 3,52	177,00± 3,45	
		№2	164,20± 3,34	172,00± 3,40	178,40± 3,46	172,20± 3,41	
		№3	$160,00\pm 3,30$	$162,80\pm3,33$	172,60±3,41	169,40± 3,38	
		№4	$155,40\pm 3,27$	$165,20\pm3,35$	170,20±3,39	167,40± 3,37	

Исходя из таблицы видно, что наибольшую титруемую кислотность имел образец творога № 1. Схожую динамику, но с меньшими значениями демонстрировал образец творога №2. Образцы творога №3 и №4 имели меньшие значения титруемой кислотности, что можно объяснить меньшим содержанием молочнокислых микроорганизмов в твороге.

Результаты исследования массовой доли влаги в твороге представлены в таблице 4.

Таблица 4 – Результаты определения массовой доли влаги в образцах творога

Показатель	Нормативное требование (СТБ 315-2017)	Образец	Срок хранения, сутки				
		90	Свежий	3	6	9	
Массовая доля влаги, %	Не более 75,00	№ 1	73,80±0,93	73,60±0,93	73,90±0,93	74,20±0,93	
		№2	74,10±0,93	74,20±0,93	74,00±0,93	74,40±0,93	
		№3	74,20±0,93	74,40±0,93	74,20±0,93	74,50±0,93	
		№ 4	74,80±0,93	74,40±0,93	74,70±0,93	74,80±0,93	

Наименьшее значение массовой доли влаги имел образец творога № 1. Остальные образцы творога имели более высокое значение данного показателя.

Выводы. По результатам исследования содержания молочнокислых микроорганизмов в твороге, можно сделать вывод о снижении их количества к конечному сроку хранения. Исследование титруемой кислотности в образцах творога в процессе хранения показало, что титруемая кислотность возрастает в течение первых шести суток, а в последующем уменьшается. Исходя из этого можно сделать вывод о волнообразном характере нарастания титруемой кислотности. Массовая доля влаги в образцах творога изменялась незначительно: расхождение между данным показателем во всех образцах творога составляло не более 1% на протяжении срока хранения. Полученные значения физико-химического и микробиологического анализа соответствуют требованиям, установленным нормативной документацией.

Список использованных источников

- 1. Бактериальные закваски для производства творога [Электронный источник]. Режим доступа: https://cyberleninka.ru/article/n/bakterialnye-zakvaski-dlya-proizvodstva-tvoroga. Дата доступа: 06.04.2024.
- 2. Першина, Е. И. Товароведение и экспертиза однородных групп товаров (молоко и молочные продукты). Учебное пособие/ Е.И. Першина, О.А. Рязанова Кемеровский технологический институт пищевой промышленности. Кемерово, 2004. 97 с.

Введ.01.01.1991. – М: Стандартинформ, 2010. – 14 с. 4. Творог. Технические условия: СТБ 315-2017. – Введ. 09.01.2017. – М: Стандартинформ, 2017. – 17 с.

3. Продукты пищевые. Методы определения молочнокислых микроорганизмов: ГОСТ 10444.11-89. –