ФАРМАКОКИНЕТИКА ОСНОВНЫХ КОМПОНЕНТОВ РОМАШКИ АПТЕЧНОЙ И ЧИСТОТЕЛА БОЛЬШОГО

Д.А. Мельникович, Ю.А. Павлюкович, 2 курс Научный руководитель — И.С. Черней, ассистент Полесский государственный университет

Семейство астровые (*Asteraceae*) — одно из самых крупных семейств цветковых растений, включающее около 23 тысяч видов, объединённых в 1600 родов. Это растения, преимущественно травянистые, реже кустарники и деревья. Распространены астровые по всему миру, но особенно много их в тропиках [1]. Рассмотрим подробнее представителей семейства *Asteraceae Matricaria chamomilla* и *Tanacetum vulgare*.

Ромашка аптечная (*Matricaria chamomilla*) — однолетнее травянистое растение, высотой до 40 см. Листья перисто-рассеченные, цветки белые, с жёлтой серединой. *Matricaria chamomilla* обладает противовоспалительными, антисептическими и успокаивающими свойствами. Противовоспалительное действие ромашки связано с содержанием в ней азулена и бисаболола, которые снижают воспаление и отек тканей, а также обладают противовирусным, противогрибковым и антибактериальным действием в отношении таких микроорганизмов, как *Staphylococcus aureus*, *Streptococcus pyogenes*, *Candida albicans* и других бактерий и грибков, которые могут вызывать инфекции кожи и слизистых оболочек [2].

Чистотел большой (*Tanacetum vulgare*) – многолетнее травянистое растение, высотой до 1 метра. Листья перисто-рассеченные, цветки жёлтые, собраны в зонтики. Чистотел большой известен своими лечебными свойствами, его используют для лечения кожных заболеваний, бородавок, папиллом и других новообразований [3].

В Tanacetum vulgare обнаружено более 50 алкалоидов. Определены алкалоиды хелидонин, гомохелидонин, хелеритрин, дигидрохелеретрин, метоксихелидонин, сангвинарин и др.. Кроме них, в траве обнаружены дубильные вещества, белки, смолы, экстраактивные вещества, горечи. Эфирное масло чистотела содержит хамазулен, нерил бутаноат, борнилацетат, альфа-эпи-бизаболол и кариофиллен [3]. Благодаря данным компонентам чистотел большой обладает антибактериальной и противогрибковой активностью в отношении различных видов микроорганизмов, таких как Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus fumigatus [3].

Для улучшения эффективности и снижения стоимости в процессе поиска потенциальных лекарственных соединений были разработаны *in silico* методы, включая скрининг на основе ЯМР, фармакофорный анализ, виртуальный скрининг, тотальный докинг, а также методы хемо- и биоинформатики.

Целью нашего исследования являлась оценка фармакокинетических характеристик компонентов Asteraceae Matricaria chamomilla и Tanacetum vulgare с целью их потенциального использования в качестве лекарственных препаратов.

Для оценки фармакинетических свойств выбраных компонентов используют ряд методов, которые способны предсказывать их ADME-свойства. Свойства-ADME – это характеристики фармацевтических соединений, которые связаны с адсорбцией, распределением и метаболизмом [4].

- Адсорбция используется для изучения взаимодействия биомолекул с различными поверхностями, такими как мембранные белки или наночастицы.
- Распределение. Этот метод используется для оценки параметров модели на основе имеющихся данных и для моделирования случайных событий в биоинформатике, например, случайные мутации в геноме и случайные вариации в структуре белков.
- Метаболизм. Суть метода заключается в том, что на основе известных структурных характеристик лигандов (например, молекулярной массы, числа атомов, длины связей и т.д.) строится

математическая модель, которая позволяет предсказывать фармакокинетические свойства новых лигандов.

Знание параметра липофильности, размера, полярности и растворимости важно для понимания свойств молекул и их взаимодействия с другими веществами. Это помогает предсказать, как молекулы будут вести себя в различных условиях и какие реакции они могут вызывать [5]. Например, липофильность влияет на способность молекулы проникать через биологические мембраны, а размер и форма определяют, как молекула будет взаимодействовать с другими молекулами и участвовать в химических реакциях. Понимание этих параметров также важно при разработке лекарственных препаратов и других химических продуктов [6]. Эти критерии учитывались в работе и были проанализированы, а полученные данные представлены в таблице 1.

Таблица 1. – Физико-химические свойства основным молекул Matricaria chamomilla и Tanacetum vulgare

Название компо- нента	Липофильность XLOGP3 (от -0,7 до +5)	Размер (150- 500 г\моль)	Полярность (TSPA 20- 130Å ²)	Растворимость				
Matricaria chamomilla								
Пектин	-2,94	180,16	0	Растворимый				
Камфора	2,19	152,23	0	Растворимый				
Мирцен	4,17	136,23	0	Растворимый				
Цинеол	2,74	154,25	0	Растворимый				
Апигенин	3,02	270,24	0	Умеренно растворимый				
Tanacetum vulgare								
Спартеин	4,45	332,33	0	Умеренно растворимый				
Витамин С	-1,64	176,12	0	Хорошо растворим				
Магнофлорин	2,74	342,41	0	Растворимый				
Цериловый спирт	7,11	242,44	0	Умеренно растворимый				
Рутин	-0,33	610,52	0	Растворимый				

Данные таблицы 1 показывают, что все молекулы *Matricaria chamomilla* липофильны, кроме пектина; все молекулы *Tanacetum vulgare* липофильны, за исключением церилового спирта и аспаргиновой кислоты, который находится немного за пределами оптимального диапазона. Все молекулы также растворимы, но не обладают необходимой полярностью. Параметр полярности важен в изучении фармакокинетических свойств веществ, поскольку он влияет на растворимость, абсорбцию, распределение и метаболизм лекарственного средства в организме. При оценке фармакокинетики рассматривался коэффициент проницаемости для кожи (log Kp).Высокий коэффициент проницаемости указывает на то, что вещество легко проходит через биологические мембраны и быстро достигает целевых тканей или органов. Это может привести к более быстрому началу действия препарата и улучшению его эффективности. Низкий коэффициент проницаемости, напротив, указывает на то, что вещество плохо проходит через биологические мембраны и медленно достигает целевых тканей или органов. Также рассматривался показатель взаимодействия молекулы с семейством ферментов цитохром Р450. Взаимодействие молекулы изучаемого вещества с цитохромом Р450 может оказывать значительное влияние на его фармакокинетические свойства, такие как абсорбция, распределение, метаболизм и экскреция.

Знание об ингибировании и синтетической доступности (СД) компонентов важно при изучении их фармакокинетических свойств, поскольку эти факторы могут влиять на процесс биотрансформации и элиминации веществ в организме (таблица 2).

Данные таблицы 2 свидетельствуют о том, что среди представленных компонентов ни один не относится к ингибиторам CYP2C19 и CYP2C9. Среди компонентов лишь апигенин, магнофлорин и цериловый спирт являются ингибиторами CYP1A2, CYP2D6 и CYP3A4.

Таблица 2. – Фармокинетика основных компонентов Matricaria chamomilla и Tanacetum vulgare

Название	log Kp	Ингибитор	Ингибитор	Ингибитор	Ингибитор	Ингибитор	СД		
компонента	(cm\s)	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4			
Matricaria chamomilla									
Пектин	-9,49	нет	нет	нет	нет	нет	3,31		
Камфора	-5,67	нет	нет	нет	нет	нет	3,22		
Мирцен	-4,17	нет	нет	нет	нет	нет	2,85		
Цинеол	-5,30	нет	нет	нет	нет	нет	3,65		
Апигенин	-5,80	да	нет	нет	да	да	2,96		
Tanacetum vulgare									
Спартеин	-5,93	нет	нет	нет	нет	нет	3,29		
Витамин С	-8,54	нет	нет	нет	нет	нет	3,47		
Магнофлорин	-6,44	да	нет	нет	нет	да	3,78		
Цериловый спирт	-2,73	да	нет	нет	нет	нет	2,29		
Рутин	-10,26	нет	нет	нет	нет	нет	6,52		

Также, лучшим коэффициентом проницаемости кожи (log Kp) является цериловый спирт, в то время как у рутина, наоборот, худшая проницаемость. По показаниям синтетической доступности, самой перспективной виртуальной молекулой является цериловый спирт.

На основании фармакокинетических характеристик изучаемых компонентов *Matricaria chamomilla* и *Tanacetum vulgare*, указанные вещества – камфора, пектин, цинеол, рутин, спартеин и аскорбиновая кислота, могут рассматриваться как потенциальные лекарственные препараты.

Список использованных источников

- 1. Кушаков А.А. Определитель семейств растений по плодам. Т. 2: Семейство астровые (Asteraceae).–М.: Коноспория, 2019.–224.
- 2. Зайцева, Н.С. Фармакогностическое исследование ромашки аптечной / Н.С. Зайцева, Е.В. Кузнецова // Фармация и фармакология.—2018.—Т. 6.—№ 3.—С. 67—74.
- 3. Лебедева, Н. С., & Лебедев, В. С. (2018). Фармакологические свойства и применение чистотела большого в медицине. Медицинский альманах, 2(53), 98–101.
- 4. Тарасевич Я.В., Ярошенко С.И., Соловей К.Г. Фармакокинетика лекарственных средств.–М.: Гэотар-Медиа, 2018.–376 с.
- 5. Липофильность и фармакокинетика лекарственных препаратов / под ред. Петровой Н.В., Ивановой А.А.-М.: Бином, 2018.–288 с.
- 6. Черней, И.С. Компьютерный анализ фармокинетики и сходства с лекарствами основных компонентов эфирного масла *Humulus lupulus* / И.С. Черней // Научный потенциал молодежи будущему Беларуси : материалы XVI международной молодежной научно—практической конференции, Пинск, 15 апреля 2022 г. : в 2-х ч. / Министерство образования Республики Беларусь [и др.] ; редкол.: В.И. Дунай [и др.]. Пинск : ПолесГУ, 2022. Ч. 2. С. 275–277.