Объединенный институт проблем информатики Национальной академии наук Беларуси

XXII Международная научно-техническая конференция

РАЗВИТИЕ ИНФОРМАТИЗАЦИИ И ГОСУДАРСТВЕННОЙ СИСТЕМЫ НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ

РИНТИ-2023

16 ноября 2023 г., Минск

Доклады

Минск ОИПИ НАН Беларуси 2023 **Развитие информатизации и государственной системы научно-технической информации (РИНТИ-2023)**: доклады XXII Международной научно-технической конференции, Минск, 16 ноября 2023 г. — Минск : ОИПИ НАН Беларуси, 2023. — 400 с. — ISBN 978-985-7198-15-3.

Представлены доклады XXII Международной научно-технической конференции «Развитие информатизации и государственной системы научно-технической информации» (РИНТИ-2023), Минск, 16 ноября 2022 г., в которых рассмотрены концептуальные основы создания Единого республиканского центра организации доступа к мировым электронным информационным ресурсам, результаты научно-методического обеспечения развития информатизации в 2022–2023 гг., роль человеческого капитала в развитии цифровизации и информационного общества в контексте качества образования, состояние и перспективы цифрового развития Республики Беларусь, вопросы непрерывной подготовки кадров в области кибербезопасности для цифровой трансформации и цифрового развития отраслей экономики Беларуси, необходимые условия технологического суверенитета в сфере ИКТ, факты истории создания белорусской вычислительной техники и др.

Рассмотрены вопросы научно-методического, информационного, технологического и правового обеспечения цифровой трансформации, проектирования и внедрения автоматизированных систем научно-технической информации, библиотечно-информационных систем и технологий, публикационной активности ученых, а также искусственного интеллекта и когнитивных технологий в информатизации.

Материалы конференции будут полезны специалистам в области информационно-коммуникационных технологий, занимающимся научно-методическим обеспечением информатизации и решением задач построения ИТ-страны, цифровой экономикой, разработкой и внедрением автоматизированных информационных систем управления, систем научно-технической информации, автоматизированных библиотечно-информационных систем и технологий, а также развитием информационной инфраструктуры Беларуси и других стран, реализацией проектов государственных и отраслевых программ в сфере информатизации.

Одобрены программным комитетом и печатаются по решению редакционной коллегии Объединенного института проблем информатики Национальной академии наук Беларуси в виде, представленном авторами.

Научные редакторы:

доктор военных наук, кандидат технических наук, доцент С. В. Кругликов кандидат технических наук, доцент Р. Б. Григянец кандидат технических наук, доцент В. Н. Венгеров

РЕСУРСНО-ПРОЦЕССНАЯ МОДЕЛЬ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛЕНИЙ ПРИ ОГРАНИЧЕННОМ ЧИСЛЕ КОПИЙ ПРОГРАММНОГО РЕСУРСА

П. А. Павлов¹, Н. С. Коваленко²
¹Полесский государственный университет, Пинск, Беларусь;
²Белорусский государственный университет, Минск

Построена математическая модель распределенных вычислений, решены задачи нахождения минимального времени выполнения неоднородных, однородных и одинаково распределенных процессов, конкурирующих за использование ограниченного числа копий программного ресурса в асинхронном режиме в случаях неограниченного и ограниченного параллелизма по числу процессоров многопроцессорной системы (МС). При этом использованы идеи структурирования программного ресурса на линейно-упорядоченные блоки с их последующей конвейеризацией по процессам и процессорам МС.

Ввеление

Распределенные вычисления – перспективная и динамично развивающаяся область организации параллелизма. Создание высокопроизводительных распределенных МС и вычислительных комплексов характеризуется широким проникновением в аппаратное и программное обеспечение фундаментальных принципов распараллеливания и конвейеризации вычислений. В связи с этим происходит процесс пересмотра математических методов и алгоритмов решения задач в различных предметных областях вплоть до пересмотра всего алгоритмического багажа прикладной математики, выдвигаются новые требования к построению и исследованию математических моделей, касающихся различных аспектов параллельной и конвейерной организации вычислений.

Необходимость и актуальность исследований в этих направлениях связана и с тем, что принципы структурирования, распараллеливания и конвейеризации носят достаточно общий характер и присущи процессам различной природы [1, 2]. Случай, когда в общей памяти МС имеется одна копия программного ресурса, с различных точек зрения был изучен в работах [3–6]. Изучение задач, относящихся к оптимальной организации распределенных параллельных вычислений, приобретает особую актуальность в случае, когда в общей памяти МС может быть одновременно размещено ограниченное число копий программного ресурса. Такое обобщение носит принципиальный характер в виду того, что отражает основные черты мультиконвейерной обработки, а также позволяет сравнить эффективность конвейерной и параллельной обработки.

1. Математическая модель распределенных вычислений

Математическая модель системы распределенной обработки конкурирующих взаимодействующих процессов при ограниченном числе копий программного ресурса включает в себя: $p \ge 2$ процессоров МС, которые имеют доступ к общей памяти; $n \ge 2$ распределенных конкурирующих процессов; $s \ge 2$ блоков структурированного на блоки программного ресурса; матрицу $T = [t_{ij}], i = \overline{1,n}, j = \overline{1,s}$ времен выполнения блоков программного ресурса распределенными взаимодействующими конкурирующими процессами; $2 \le c \le p$, число копий структурированного на блоки программного ресурса, которые могут одновременно находиться в оперативной памяти, доступной для всех p процессоров; $\theta > 0$ — параметр, характеризующий время дополнительных системных расходов, связанных с организацией конвейерного режима использования блоков структурированного программного ресурса множеством взаимодействующих конкурирующих процессов при распределенной обработке.

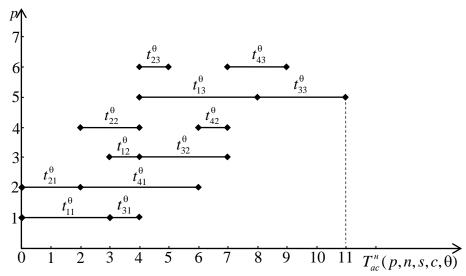
Будем также предполагать, что число блоков программного ресурса $s \le p_c = [p/c]$, где [x] – целая часть числа, а число процессов n кратно числу копий c структурированного программного ресурса, т. е. n = mc, $m \ge 2$, и что взаимодействие процессов, процессоров и блоков программного ресурса подчинено следующим условиям:

- ни один из процессоров не может обрабатывать одновременно более одного блока;
- процессы выполняются в параллельно-конвейерном режиме группами, т. е. осуществляется одновременное (параллельное) выполнение c копий каждого блока в сочетании с конвейеризацией группы из c копий Q_j -го блока по процессам и процессорам, где $j=\overline{1,s}$;
 - обработка каждого блока программного ресурса осуществляется без прерываний;
- распределение блоков Q_j , $j=\overline{1,s}$ программного ресурса по процессорам для каждого из процессов i=c(l-1)+q, $l=\overline{1,m}$, $q=\overline{1,c}$, где m=n/c, осуществляется циклически по правилу: блок с номером j распределяется на процессор с номером c(j-1)+q.

Введем следующие режимы конвейерной реализации взаимодействия процессов, процессоров и блоков с учетом наличия c копий программного ресурса.

Асинхронной режим взаимодействия процессов, процессоров и блоков структурированного программного ресурса предполагает, что начало выполнения копии очередного Q_j -го блока, $j=\overline{1,s}$, определяется наличием c процессоров и готовностью копии блока к выполнению. При этом программный блок считается готовым к выполнению, если он не выполняется ни на одном из процессоров.

Первый синхронный режим обеспечивает линейный порядок выполнения блоков программного ресурса внутри каждого из процессов без задержек, т. е. в случае, когда $2 \le s \le p_c$, момент завершения выполнения Q_j -го блока, $j=\overline{1,s-1}$, процессом с номером i=(l-1)c+q, $l=\overline{1,m}$, $q=\overline{1,c}$, на ((j-1)c+q)-м процессоре совпадает с моментом начала выполнения следующего Q_{j+1} -го блока на процессоре с номером (jc+q).


При втором синхронном режиме в случае, когда $2 \le s \le p_c$, момент завершения выполнения i-м процессом, где i=(l-1)c+q, $l=\overline{1,m-1}$, $q=\overline{1,c}$, j-го блока, $j=\overline{1,s}$, на ((j-1)c+q)-м процессоре совпадает с моментом начала выполнения j-го блока процессом с номером (i+c) на этом же процессоре, т. е. обеспечивается непрерывное выполнение на каждом процессоре c копий каждого блока структурированного программного ресурса.

В этих предположениях рассмотрим решение задач получения математических соотношений для вычисления минимального общего времени реализации множества распределенных конкурирующих процессов при ограниченном числе копий программного ресурса для асинхронного режима.

2. Время выполнения неоднородных процессов в условиях неограниченного и ограниченного параллелизма

Рассмотрим *асинхронный* режим взаимодействия процессов, процессоров и блоков структурированного программного ресурса (рисунок).

Определение 1. Система n распределенных конкурирующих процессов называется неоднородной, если времена выполнения блоков программного ресурса $Q_1,\ Q_2,\ ...,\ Q_s$ зависят от объемов обрабатываемых данных и/или их структуры, т. е. разные для разных процессов.

Асинхронный режим взаимодействия процессов, процессоров и блоков программного ресурса

Обозначим минимальное общее время выполнения n неоднородных распределенных конкурирующих процессов использующих c копий структурированного на s блоков программного ресурса с матрицей времен выполнения T^{θ} в многопроцессорной системе с p процессорами с учетом дополнительных системных расходов θ в асинхронном режиме через $T^{\mu}_{ac}(p,n,s,c,\theta)$. Для вычисления $T^{\mu}_{ac}(p,n,s,c,\theta)$ рассмотрим случаи неограниченного, т. е. $s \leq p_c$, и ограниченного, когда $s > p_c$, параллелизма.

Пусть имеется система n=mc неоднородных распределенных конкурирующих процессов, где $m\geq 2$, а $2\leq c\leq p$, причем число блоков s структурированного программного ресурса не превосходит числа групп по c процессоров в каждой, т. е. $2\leq s\leq p_c$. В этом случае без ограничения общности можно считать, что каждый Q_j -й блок, $j=\overline{1,s}$, i-го процесса, где i=c(l-1)+q, $l=\overline{1,m}$, $q=\overline{1,c}$, будет выполняться на (c(j-1)+q)-м процессоре. Тогда для выполнения всех n процессов достаточно использовать cp_c процессоров, а остальные $p-cp_c$ будут не задействованы.

Пусть $T^{\theta} = [t^{\theta}_{ij}] - n \times s$ — матрица времен выполнения блоков структурированного программного ресурса каждым из i-х процессов с учетом параметра $\theta > 0$, где $t^{\theta}_{ij} = t_{ij} + \theta$, $i = \overline{1,n}$, $j = \overline{1,s}$. Для вычисления минимального общего времени $T^{n}_{ac}(p,n,s,c,\theta)$ можно воспользоваться функционалом задачи Беллмана — Джонсона, который в нашем случае будет иметь вид:

$$T_{ac}^{\mu}(p,n,s,c,\theta) = \max_{1 \le q \le c} \left(\max_{1 \le u_1 \le u_2 \le \dots \le u_{s-1} \le m} \left[\sum_{i=1}^{u_1} t_{c(i-1)+q,1}^{\theta} + \sum_{i=u_1}^{u_2} t_{c(i-1)+q,2}^{\theta} + \dots + \sum_{i=u_{s-1}}^{m} t_{c(i-1)+q,s}^{\theta} \right] \right], \quad (1)$$

где u_1 , u_2 , ..., u_{s-1} – целые числа.

В работах [3, 5] рассмотрен алгоритм, который позволяет решить задачу определения минимального общего времени выполнения неоднородных распределенных конкурирующих процессов в асинхронном режиме при ограниченном числе копий структурированного программного ресурса с помощью аппарата вершинно-взвешенных графов.

3. Время реализации однородных распределенных процессов

Определение 2. Систему распределенных конкурирующих процессов будем называть *однородной*, если времена выполнения Q_j -го блока каждым из i-х процессов равны, т. е. $t_{ii}^{\theta} = t_i^{\theta}$, $i = \overline{1,n}$, $j = \overline{1,s}$.

Пусть $(t_1^\theta,\ t_2^\theta,\ ...,\ t_s^\theta)$ — длительности выполнения каждого блока Q_j , $j=\overline{1,s}$, программного ресурса с учетом накладных расходов θ . Обозначим длительность выполнения всего программного ресурса каждым из процессов через $T_s^\theta = \sum_{i=1}^s t_j^\theta$.

В случае достаточного числа процессоров, т. е. когда $s \le p_c$, вычисление общего времени выполнения n = mc, $m \ge 2$, однородных распределенных процессов, конкурирующих за ограниченном числе копий программного ресурса $2 \le c \le p$, сводится к нахождению общего времени выполнения m процессов на p_c процессорах, конкурирующих за использование одной копии программного ресурса.

Для доказательства воспользуемся функционалом (1) задачи Беллмана – Джонсона, который для систем однородных конкурирующих процессов будет иметь вид:

$$T_{ac}^{o}(p, n, s, c, \theta) = T_{ac}^{o}(p_{c}, m, s, 1, \theta) = \max_{1 \leq u_{1} \leq u_{2} \leq ... \leq u_{s-1} \leq m} \left[\sum_{i=1}^{u_{1}} t_{1}^{\theta} + \sum_{i=u_{1}}^{u_{2}} t_{2}^{\theta} + ... + \sum_{i=u_{s-1}}^{m} t_{s}^{\theta} \right] =$$

$$= \sum_{j=1}^{s} t_{j}^{\theta} + (m-1) \max_{1 \leq j \leq s} t_{j}^{\theta} + (m-1) \max_{1 \leq j \leq s} t_{j}^{\theta},$$

где $u_1, \ u_2, \ ..., \ u_{s-1}$ – целые числа.

Определение 3. Однородное структурирование программного ресурса на s блоков с временами выполнения $(t_1^{\theta}, t_2^{\theta}, ..., t_s^{\theta})$, $T_s^{\theta} = \sum_{j=1}^s t_j^{\theta}$, будем называть paвномер-ным, если $t_1^{\theta} = t_2^{\theta} = ... = t_s^{\theta} = t^{\theta}$.

Теорема. В случае равномерного структурирования для вычисления минимального общего времени выполнения распределенных конкурирующих процессов при ограниченном числе копий программного ресурса имеют место формулы:

$$T_{ac}^{pc}(p,n,s,c,\theta) = \begin{cases} \left(m+s-1\right)t^{\theta}, & p_{c} \geq \min(m,s), \\ \left(km+p_{c}-1\right)t^{\theta}, & p_{c} < \min(m,s), \ s=kp_{c}, \ k>1, \\ \left((k+1)m+r-1\right)t^{\theta}, & p_{c} < \min(m,s), \ s=kp_{c}+r, \ k\geq 1, \ 1\leq r < p_{c}. \end{cases}$$

4. Вычисления в одинаково распределенных системах

Определение 4. Систему распределенных конкурирующих процессов будем называть одинаково распределенной, если времена выполнения всех блоков программ-

ного ресурса каждым из процессов совпадают и равны t_i^θ , т. е. справедлива цепочка равенств $t_{i1}^\theta=t_{i2}^\theta=...=t_{is}^\theta=t_i^\theta$, для всех $i=\overline{1,n}$.

Функционал (1) задачи Беллмана — Джонсона для случая, когда $s \le p_c$, для системы одинаково распределенных конкурирующих процессов будет иметь вид:

$$T_{ac}^{op}(p, n, s, c, \theta) = \max_{1 \le q \le c} \left(T_q^{\theta} + (s-1)t_{\max}^q \right),$$

где $u_1,\ u_2,\ ...,\ u_{s-1}$ — целые числа. Данная формула применима для вычисления $T_{ac}^{op}(p,n,s,c,\theta)$ и для случая, когда $s>p_c$ и $T_q^\theta\leq p_c t_{\max}^q$, $q=\overline{1,c}$.

В случае когда число блоков МС $s=kp_c$, k>1 и $T_q^\theta>p_ct_{\max}^q$, $q=\overline{1,c}$, вычисление $T_{ac}^{op}(p,n,s,c,\theta)$ с помощью функционала задачи Беллмана – Джонсона приводит к формуле:

$$T_{ac}^{op}(p, n, s, c, \theta) = T_{ac}^{op}(p, n, kp_c, c, \theta) = \max_{1 \le q \le c} \left(kT_q^{\theta} + (p_c - 1)t_{\text{max}}^{q} \right).$$

В случае когда $s=kp_c+r$, $k \ge 1$, $1 \le r < p_c$ и $T_q^\theta > p_c t_{\max}^q$, $q=\overline{1,c}$, для вычисления общего времени выполнения одинаково распределенных конкурирующих процессов в случае ограниченного числа копий программного ресурса функционал задачи Беллмана – Джонсона преобразуется к виду:

$$T_{ac}^{op}(p, n, kp_c + r, c, \theta) = \max_{1 \le q \le c} ([k+1]T_q^{\theta} + [r-1]t_{\max}^q).$$

Заключение

Полученные результаты можно использовать:

- при исследовании синхронных режимов взаимодействия процессов, процессоров и блоков структурированного программного ресурса;
 - сравнительном анализе различных режимов распределенных вычислений;
- математическом исследовании эффективности и оптимальности мультиконвейерной организации вычислений;
- решении задач построения оптимальной компоновки блоков программного ресурса и нахождения оптимального числа процессоров, обеспечивающих директивное время выполнения заданных объемов вычислений, и др.

Список литературы

- 1. Development of a resource-process approach to increasing the efficiency of electrical equipment for food production / N. Zaiets [et al.] // Eastern-European Journal of Enterprise Nechnologies. -2019. $-N_2$ 8 (101). -C. 59–65.
- 2. Ресурсно-процессная модель энергоменеджмента локального объекта с несколькими источниками энергии / В. В. Каплун [и др.] // Вестник Брестского государственного технического университета. 2019. № 4 (117). С. 86–91.
- 3. Павлов, П. А. Распределенные вычисления при ограниченном числе копий программного ресурса / П. А. Павлов, Н. С. Коваленко // Программные продукты и системы. -2011. № 4. С. 155–163.
- 4. Коваленко, Н. С. Задачи оптимизации числа процессоров и построения оптимальной компоновки распределенных систем / Н. С. Коваленко, П. А. Павлов,

- М. И. Овсец // Вестник БГУ. Серия 1: Физика. Математика. Информатика. 2012. N 1. С. 119—126.
- 5. Kovalenko, N. S. Asynchronous distributed computations with a limited number of copies of a structured program resource / N. S. Kovalenko, P. A. Pavlov, M. I. Ovseec // Cybernetics and systems analysis. -2012.-Vol. 48, N0 1. -P. 86–98.
- 6. Kovalenko, N. S. Optimal Grouping Algorithm of Identically Distributed Systems / N. S. Kovalenko, P. A. Pavlov // Programming and Computer Software. -2012. Vol. 38, N 3. P. 143-150.

СОДЕРЖАНИЕ

Введение
ПЛЕНАРНЫЕ ДОКЛАДЫ
Коржицкий Д. Л., Мельников Л. Е., Денисов А. Ю., Денисова Н. Ф., Макаренко Н. А. Концептуальные основы создания Единого республиканского центра организации доступа к мировым электронным информационным ресурсам
Кругликов С. В., Григянец Р. Б., Науменко Г. Н. Результаты научно-методического обеспечения развития информатизации в 2022–2023 гг. 13
Касанин С. Н., Кругликов С. В., Муха Н. П. Роль человеческого капитала в развитии цифровизации и информационного общества в контексте качества образования
Енин С. В., Алексеев А. Е., Юневич Н. Г. Состояние и перспективы цифрового развития Республики Беларусь
Воротницкий Ю. И., Курбацкий А. Н., Туромша Т. Ю. Непрерывная подготовка кадров в области кибербезопасности для цифровой трансформации и цифрового развития отраслей экономики
Курбацкий А. Н. Необходимые условия технологического суверенитета в сфере ИКТ
Богданова И. Ф., Богданова Н. Ф. Страницы истории белорусской вычислительной техники: сохранение памяти 53
1. НАУЧНО-МЕТОДИЧЕСКОЕ, ИНФОРМАЦИОННОЕ, ТЕХНОЛОГИЧЕСКОЕ И ПРАВОВОЕ ОБЕСПЕЧЕНИЕ ЦИФРОВОЙ ТРАНСФОРМАЦИИ
Пашкевич А. Д., Абламейко С. В. Определение направления движения группы людей на видео на основе вычисления оптического потока нейронной сетью
Кругликов С. В., Давыдовский А. Г. Моделирование процессов информационного обмена для синтеза бизнес-эталонной модели исполнительного комитета города (региона)
Шавров С. А. Об интероперабельности пространственных данных
Верезубова Т. А. Методика оценки рисков проведения видов страхования на основе метода VaR

Борисевич Н. Я. Особенности постчернобыльского информирования населения: современные аспекты.	90
Самсонов В. Е., Шарак В. С. Методика комплексной оценки уровня цифровой зрелости	94
Абдуллаева С. Сравнительный анализ подходов к мониторингу и оценке интернет-медиа	98
Горбачев Н. Н. Проблемы взаимодействия активных информационных систем и активных сервисов	103
Григянец Р. Б., Науменко Г. Н., Венгеров В. Н. О развитии цифровизации и формировании электронного государства в Беларуси	108
Дашдамирова К. Г. Анализ принятых международных и национальных стандартов в области мониторинга информационной безопасности	112
Пашаева Г. Возникновение национальной сетевой инфраструктуры Интернета в Азербайджане	117
Ганченко В. В., Инютин А. В. Разработка разделенной архитектуры нейросетевого программного комплекса для мониторинга и прогнозирования состояния подсистем космических аппаратов.	122
Ганченко В. В., Инютин А. В., Фазылов III. X. Модель искусственных нейронных сетей для идентификации образов по прецедентам	125
Воронов А. А., Олифирук М. В. Семантическая сегментация изображений дистанционного зондирования земной поверхности на основе сверточных нейронных сетей	130
Румянцев В. А., Гончарик Н. В. О цифровом сотрудничестве Беларуси и АСЕАН	135
Саидова М. Т., Аскеров Ф. Ш., Гасанова Р. Ш. Аспекты процесса публикации и научная этика	140
Анейчик С. А., Костюкевич Ю. В., Нозик В. М. Разработка компонентов интегрированной системы повышения информационной безопасности академсети BASNET	145
Севрук Е. А., Качан Д. А., Юневич Н. Г. Выделение трендов цифрового развития с помощью автоматизированной аналитики частоты и тематики научных публикаций	148

2. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ, ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ НАУЧНОЙ, НАУЧНО-ТЕХНИЧЕСКОЙ И ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ

Деев Н. А., Бокуть Л. В., Ковалев М. Я. Интеллектуальный анализ данных и цифровые технологии: важнейшие результаты 2022 года	154
Ганчерёнок И. И., Горбачев Н. Н., Хидиров У. Д., Абдихаиров Р. А. Моделирование Международного центра открытых образовательных ресурсов	
Григянец Р. Б., Успенский Ал. А., Венгеров В. Н. Формирование и ведение единого информационного ресурса по обеспечению инновационной деятельности и трансфера технологий в НАН Беларуси	164
Григянец Р. Б., Венгеров В. Н., Молчан Ж. М., Котов В. И., Успенский А. Ал., Успенский Ал. А., Прибыльский М. С. О повышении компетенций сотрудников НАН Беларуси в сфере трансфера технологий	
Успенский А. Ал., Успенский Ал. А. Новые интернет-инструменты продвижения разработок, продукции и услуг, предоставляемые Республиканским центром трансфера технологий организациям НАН Беларуси	172
Горбач Л. А. Медицинские нейронные сети: возможности, ограничения, области применения	176
Липницкий С. Ф., Степура Л. В. Поиск и лексико-семантическая обработка научно-технической информации	181
Дравица В. И., Король И. А., Полещук А. В. Цифровые экосистемы идентификации и прослеживаемости товаров в цепях поставок	186
Дыдо В. В., Люціч М. С., Павуціна М. А., Драгун А. Я., Хахлоў В. А., Трафімаў А. С., Зяноўка Я. С., Гецэвіч Ю. С. Беларускамоўны галасавы АІ-асістэнт	190
Григянец Р. Б., Рабушко К. А. Интеллектуализация информационно-поисковых систем с базами документов неоднородной структуры	
Слесарава М. М., Латышэвіч Д. І., Танюкевіч Д. П., Назараў У. У., Шаховіч Ю. В., Зяноўка Я. С., Гецэвіч Ю. С. Інтэрактыўныя карты размяшчэння зімавальных ям у рыбалоўных узгоддзях	200
Павлов П. А., Коваленко Н. С. Ресурсно-процессная модель распределенных вычислений при ограниченном числе колий программного ресурса	205

Сикорская О. Н., Бовкунович М. А. Библиометрические метаданные белорусских публикаций в национальной системе оценки
Григянец Р. Б., Степанцова Е. В., Рабушко К. А. Системы автоматизации научно-технических библиотек на основе веб-технологий
Солодков А. Т. Библиотека: бег на месте?
Шакура Н. С., Муравицкая Р. А., Аксюто Е. В., Слемнева В. В., Фащук Т. С. Эволюция журнала «Весці Нацыянальнай акадэміі навук Беларусі. Серыя аграрных навук» в научном информационном пространстве
Ярутич Д. А. Интернет-портал РНТБ как элемент информационного взаимодействия науки и производства
Карповский Д. В. Система управления IT-активами библиотеки на базе GLPI
Браим А. В. Пользовательские события Google Analytics: общая теория и опыт применения 293
Браим А. В. Google Tag Manager: описание системы и ее базовая настройка
4. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И КОГНИТИВНЫЕ ТЕХНОЛОГИИ В ИНФОРМАТИЗАЦИИ
Абламейко М. С., Богуш Р. П. Защита и обезличивание персональных данных в системах искусственного интеллекта
Сухоручкина И. Н. Искусственный интеллект в проектах умных городов в России
Шаршун В. А. Искусственный интеллект в нормотворческой деятельности
Романчик В. С., Перез Чернов А. Х. Применение технологий искусственного интеллекта в ИТ-образовании
Мельникова Е. Н. Формирование нормативно-правовой базы распределения ответственности за вред (ущерб), причиненный приложениями искусственного интеллекта
Марищук Л. В., Ткаченко В. В. Когнитивная нейропсихология восприятия как междисциплинарное направление и научное наследие Г. В. Лосика

Бойко И. М. Семантическое кодирование действий и смыслообразование с помощью универсального семантического кода	. 336
Стрельченок О. А. Применение метода многомерного шкалирования для распознавания когнитивных намерений	. 338
Стрельченок О. А. Человечность и искусственный интеллект	343
Северин А. В. Методы измерения меры сходства стимулов с помощью многомерного шкалирования	349
Лосик Г. В., Чубаров С. И. Алгоритм распознавания индивидуальных мотивов изучения как личностных параметров	354
Бобрик А. П. О возможности существования третьей сигнальной системы	359
Назаров А. С. Программный эксперимент с апробацией методов траекторной генерации перцептивного действия в когнитивных моделях антропоподобных локомоций	365
Северин А. В. Когнитивный робот и мотивы человека при манипулировании виртуальными трехмерными объектами	370
Филипеня О. Л. Информационный аспект интеллектуальной деятельности	374
Потапов Б. В. Компьютерное зрение в исследовании процессов непроизвольного запоминания с эмоциональным подкреплением	. 378
НАШИ АВТОРЫ	382
именной указатель	392

Развитие информатизации и государственной системы научно-технической информации РИНТИ-2023

Доклады XXII Международной научно-технической конференции

Ответственный за выпуск С. С. Мойсейчик

Подписано в печать 09.10.2023. Формат 60×84 1/8. Бумага офсетная. Ризография. Уч.-изд. л. 38,7. Усл. печ. л. 46,5. Тираж 150 экз. Заказ 6.

Инделения и периотерическое менениеми

Издатель и полиграфическое исполнение: государственное научное учреждение «Объединенный институт проблем информатики Национальной академии наук Беларуси». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/274 от 04.04.2014. Ул. Сурганова, 6, 220012, Минск.