РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ГОСУДАРСТВЕННОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГЕНЕТИКИ И РАЗВЕДЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

ГЕНЕТИКА И СЕЛЕКЦИЯ В ЖИВОТНОВОДСТВЕ: ВЧЕРА, СЕГОДНЯ, ЗАВТРА

Материалы научной конференции

Санкт - Петербург 2010

РОССИЙСКАЯ АКАДЕМИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ НАУК

ГОСУДАРСТВЕННОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГЕНЕТИКИ И РАЗВЕДЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

ГЕНЕТИКА И СЕЛЕКЦИЯ В ЖИВОТНОВОДСТВЕ: ВЧЕРА, СЕГОДНЯ, ЗАВТРА

Материалы научной конференции, посвященной 70-летию образования института, 9-11 июня 2010 г.

УДК 636.082.12 ББК 45 Г 34

Г 34 Генетика и селекция в животноводстве: вчера, сегодня, завтра // Материалы научной конференции, посвященной 70-летию образования института, 9-11 июня. СПб. ВНИИГРЖ, 2010.

Редакционная комиссия:

А.В. Егиазарян, П.Н. Прохоренко, Н.С. Никитин, Б.П. Завертяев, А.Ф. Яковлев

ПОЛИМОРФИЗМ ГЕНА КАППА-КАЗЕИНА В ПОПУЛЯЦИЯХ МОЛОЧНОГО СКОТА БЕЛАРУСИ И ЕГО ВЗАИМОСВЯЗЬ С МОЛОЧНОЙ ПРОДУКТИВНОСТЬЮ И ТЕХНОЛОГИЧЕСКИМИ СВОЙСТВАМИ МОЛОКА

Т.И. Епишко, Л.А. Танана¹, О.А. Епишко, В. В. Пешко¹, Р.В. Трахимчик¹

УО «Полесский государственный университет», Пинск, Беларусь ¹УО «Гродненский государственный аграрный университет», Гродно, Беларусь

Введение. Возрастающее значение производства белковой продукции в Республике Беларусь диктует необходимость использования современных генетических методов с целью повышения интенсивности и эффективности селекции, направленной на повышение белковомолочности коров молочного скота.

В исследованиях ряда авторов показано, что белковомолочность находится в зависимости не только от породы и наследственного влияния быка производителя, но и от полиморфизма белков молока [1, 2, 3, 4].

Каппа-казеин — один из немногих известных генов, полиморфизм которого однозначно связан с признаками белковомолочности и технологическими свойствами молока. Из всех аллельных вариантов каппа- казеина выделяют В — аллельный вариант, который ассоциирован с высоким содержанием белка в молоке, лучшими коагуляционными свойствами молока, а также более высоким выходом белковомолочных продуктов [5].

Зарубежная практика показывает, что высококачественные твердые сыры могут быть изготовлены только из молока, полученного от коров, имеющих в геноме аллель В каппа-казеина (CSN3^B).

Ранее генотипы молочных белков не включали в показатели селекции, так как их полиморфизм можно было оценить только у лактирующих коров, а быки-производители могли быть оценены только путем тестирования молочных белков дочерей. Благодаря методу ДНК-диагностики стало возможным идентифицировать генотипы молочных белков у быков – производителей, быкопроизводящих коров и племенного молодняка, и эффективно использовать результаты генотипирования в селекционном процессе [1, 2]. Авторами многочисленных исследований предлагается генотипы каппа-казеина использовать в качестве генетических маркеров, позволяющих оценить продуктивные возможности животных и путем отбора и подбора родительских форм закреплять наиболее ценные из них в следующих поколениях [1, 3, 4, 5].

Учитывая опыт зарубежных исследователей, нами проведены исследования, направленные на выявление возможности использования генотипов каппа-казеина в качестве маркеров в селекции молочного скота Беларуси для совершенствования качественных и технологических свойств молока. Одновременно, целью наших исследований было изучение генетической структуры популяций быков - производителей, быкопроизводящих коров и ремонтного молодняка для определения генетических ресурсов, которыми располагает молочный скот Республики Беларусь.

Материал и методы. Исследования проведены в УО «Полесский государственный университет», УО «Гродненский аграрный университет».

Объектом исследований служили быки-производители госплемпредприятий Республики Беларусь: РСУП «Брестское племпредприятие», РСУП «Минское племпредприятие», РСУП «Гродненское племпредприятие», РСУП «Гомельское племпредприятие», РСУП «Могилевское племпредприятие», РСУП «Могилевское племпредприятие», ремонтный молодняк РУСХП «Оршанское племпредприятие», коровы РУСП «Племзавод «Красная звезда» и РСУП «Заречье», э/б «Жодино» Минской, ЗАО «Ольговское» Витебской, СПК «Обухово» и ЧСУП «Новый Двор — Агро» Гродненской, п/з «Муховец» Брестской областей, а также биопробы спермы и ткани исследуемых животных. В общей сложности проведено ДНК-тестирование по гену CSN3 у 1852 коров белорусской черно-пестрой породы, 81 — красной белорусской породной группы, у 552 быков-производителей и 232 племенных бычков.

ДНК-тестирование проводилось методом ПЦР-ПДРФ с использованием праймеров CAS1 и CAS2:

CAS1: 5' -ATA GCC AAA TAT ATC CCA ATT CAG T- 3'
CAS2: 5'- TTT ATT AAT AAG TCC ATG AAT CTT G -3'

Для проведения рестрикции применялась эндонуклеаза HindIII.

Влияние полиморфизма гена CSN3 на молочную продуктивность было проведено в различных регионах республики в стадах с высоким (СПК «Обухово»), средним (ЗАО «Ольговское») и не высоким (ЧСУП «Новый Двор – Агро») уровнями молочной продуктивности животных.

Опытные образцы твердого сыра были приготовлены из 10 кг молока коров белорусской черно-пестрой породы и красной белорусской породной группы из ЧСУП «Новый Двор — Агро» и белорусской черно-пестрой породы из СПК «Обухово» Гродненской области с различными генотипами каппа-казеина в молочной лаборатории ОАО «Беллакт» г. Волковыск.

Результаты и обсуждение. В результате изучения ассоциации полиморфных вариантов гена CSN3 с показателями молочной продуктивности коров ЗАО «Ольговское» установлено, что у животных генотипа CSN3^{BB} удой за 305 дней лактации был выше в сравнении с особями генотипа CSN3^{AA} и CSN3^{AB} на 1406 кг (Р<0,001) и 890 кг (Р<0,05), или 30,7% и 17,4% соответственно (табл. 1). Животные генотипа CSN3^{BB} характеризовались более высоким содержанием белка в молоке на 0,1% (Р<0,05) и на 0,09% (Р<0,01), выходом молочного белка на 50,8 кг

(P<0,001) и 17,3 кг (P<0,01), или 34,8% и 11,8%, в сравнении с коровами генотипа $CSN3^{AA}$ и $CSN3^{AB}$.

По содержанию жира в молоке в среднем и молочного жира в молоке за лактацию коровы с генотипом $CSN3^{AA}$ уступали особям, имеющим в геноме аллель $CSN3^{B}$ на 0,11% - 0,12% (P<0,01) и на 38,6 кг (P<0,05) и 57,8 кг (P<0,01), или 35,1% и 21,2% соответственно.

Таблица 1. Молочная продуктивность коров белорусской черно-пестрой породы с различными генотипами каппа-казеина

Показатель	Генотипы каппа-казеина				
	CSN3 ^{AA}	CSN3 ^{AB}	CSN3BB		
Удой за 305 дней лактации, кг	4578±63,9	5094±93,3 ⁺	5984±308,7**		
Жир, %	3,60±0,01	3,61±0,02 ⁺⁺	3,72±0,02**		
Молочный жир, кг	165,2±2,32	184,4±3,84 ⁺	223,0±11,78"		
Белок, %	3,18±0,01	3,19±0,01 ⁺⁺	3,28±0,02*		
Молочный белок, кг	146,0±2,07	163,3±3,38 ⁺	196,8±10,4***		

Разница с показателями генотипа CSN3^{AA} достоверна при: *P<0,05, **(P<0,01), ***(P<0,001) Разница с показателями генотипа CSN3^{AA} достоверна при: *P<0,05, **P<0,01), ***(P<0,001)

Совершенно очевидно, что прослеживается закономерность увеличения молочной продуктивности за 305 дней лактации, а так же содержания жира и белка в молоке у коров генотипа CSN3^{BB}. В то же время, анализ модификационной изменчивости содержания белка, жира, молочного жира выявил наиболее низкие показатели у животных с генотипом CSN3^{BB}, что указывает на генетическую обусловленность данных признаков, а следовательно и влияние генотипа животных в детерминации изученных показателей (рис.1).

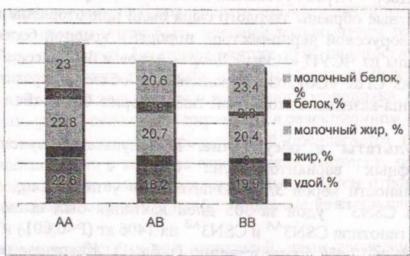


Рисунок 1. Коэффициент изменчивости молочной продуктивности коров белорусской черно-пестрой породы

Для выявления доли наследственной обусловленности влияния генотипов гена каппа-казеина на признаки молочной продуктивности нами проведен однофакторный дисперсионный анализ. Установлено, что влияние генотипов на изменчивость признаков удоя, содержания жира и белка в молоке коров носит достоверный (Р>0,999) характер, так как полученные величины 107,6; 21,6; 22,8; 131,2 и 145,3 превышают табличные.

Полученные нами данные свидетельствуют о том, что показатели продуктивности коров, такие как удой, содержание жира, белка в молоке, количество молочного жира и белка, генетически детерминированы по гену каппа-казеина.

Выявленная закономерность увеличения содержания белка в молоке и молочного белка и тенденция повышения удоя прослеживалась и в популяциях коров СПК «Обухово» и ЧСУП «Новый Двор — Агро». В ходе эксперимента нами было установлено влияние генотипов каппа-казеина на показатели качества сыра, изготовленного из молока коров белорусской черно-пестрой породы на фоне не высокой (ЧСУП «Новый Двор — Агро») и высокой (СПК «Обухово») продуктивности животных (табл. 2).

Таблица 2. Качественная характеристика сыра на фоне средней и высокой продуктивности коров белорусской черно-пестрой породы с различными генотипами каппа-казеина

	Генотипы каппа-казеина					
Показатель	Высока	я продукт	Не высокая продуктивность			
	CSN3 ^{AA}	CSN3 ^{AB}	CSN3BB	CSN3 ^{AA}	CSN3 ^{AB}	
Удой за 305 дней лактации, кг	8218,4	8287,6	8276,3	4670,7	4724,2	
Белок, %	3,23	3,28	3,38	3,12	3,21	
Количество сыра, г	1028	1080	1167	1255	1321	
Содержание белка в сухом веществе, %	38,5	38,7	39,0	40,8	44,3	
Содержание жира в сухом веществе, %	45,9	46,0	45,6	48,6	52,7	

При изготовлении опытных образцов твердого сыра из 10 кг молока наибольшее количество сыра (1167г) было получено из молока высокопродуктивных коров с генотипом CSN3^{BB}, что на 139 кг, или 13,5%, больше в сравнении с животными генотипа CSN3^{AA} и на 87 кг, или 8,1%, генотипа CSN3^{AB}. Тенденция позитивного влияния аллеля CSN3^B прослеживалась и в популяции со средним уровнем продуктивности: из молока коров генотипа CSN3^{AA} было произведено 1321 кг сыра, что на 66 кг, или 5,3%, выше в отличие от сравниваемой опытной группы особей генотипа

CSN3^{AB}. Присутствие в геноме коров аллеля CSN3^B оказало позитивное действие и на содержание белка и жира в сухом веществе, обеспечив увеличение данных показателей в группе коров со средним уровнем продуктивности на 3,5% и 4,1%.

Нами было изучено влияние аллельных вариантов гена каппа-казеина на выход опытных образцов твердого сыра и его качественную характеристику, изготовленного из молока коров воссоздаваемой красной белорусской породной группы, т.е. в зависимости от породной принадлежности молочного скота (табл. 3).

Таблица 3. Качественная характеристика сыра изготовленного из молока коров красной белорусской породной группы с различными генотипами по гену каппа-казеина

Показатель	Генотипы каппа-казеина			
A STATE OF THE PROPERTY OF THE	CSN3 ^{AA}	CSN3 ^{AB}	CSN3BB	
Количество сыра, г	1266	1334	1400	
Содержание белка в сухом веществе, %	39,9	40,6	45,1	
Содержание жира в сухом веществе, %	52,7	52,0	55,0	

Полученные данные свидетельствуют о том, что из молока коров генотипа CSN3^{BB} было изготовлено больше сыра на 134 кг, или 10,6, и на 66 кг, или 5 %, чем из молока животных генотипа CSN3^{AA} и CSN3^{AB}. При этом сыр, изготовленный из молока коров CSN3^{BB} генотипа, отличался более высоким содержанием белка на 5,2% и 4,5% и жира в сухом веществе на 2,3% и 3,0% в сравнении с опытными образцами сыра, полученного из молока коров генотипа CSN3^{AA} и CSN3^{AB}.

Таким образом, в ходе проведенных исследований установлена закономерность положительного влияния аллеля CSN3^B и генотипа CSN3^{BB}, обеспечивающих увеличение молочной продуктивности, содержания белка в молоке и его технологических характеристик: повышение выхода сыра с повышенным содержанием белка и жира в сухом веществе. Выявленная закономерность указывает на возможность использования генотипов гена каппа-казеина в качестве ДНК-маркеров, имеющих важное значение для совершенствования черно-пестрой породы по качеству молока и его технологическим свойствам.

Однако мониторинг генетической структуры быков-производителей, ремонтных бычков племпредпреятий республики и коров различных популяций по гену каппа-казеина свидетельствует о преобладании животных с генотипом CSN3^{AA} (табл. 4 и 5). Размах изменчивости частот встречаемости различных генотипов по племпредприятиям составил: CSN3^{AA} : 62,0 — 81,7 %, CSN3^{AB} : 16,9 — 36,7 %, CSN3^{BB} : 0-3,1%, то есть во всех группах наблюдалось преобладание животных генотипа CSN3^{AA} .

Таблица 4. Генетическая структура быков-производителей и ремонтных бычков по гену каппа-казеина

The balabase L.A. Tanana C.A. E.	n	Частота встречаемости			
Принадлежность		генотипов, %			
		CSN3 ^A	CSN3 ^A	CSN3B	
«Минскплемпредприятие»	20	75,0	25,0		
«Брестплемпредприятие»	205	68,8	29,4	1,8	
«Гродноплемпредприятие»	79	62,0	36,7	1,3	
«Витебскплемпредприятие»	83	78,3	20,5	1,2	
«Гомельплемпредприятие»	71	81,7	16,9	1,4	
«Могилевплемпредприятие»	94	70,2	29,8	C Siction	
В среднем по быкам- производителям	552	71,7	27,2	1,1	
«Оршанское племпредприятие»	232	74,1	22,8	3,1	
Итого	784	72,4	25,8	1,8	

В среднем, по группам быков-производителей частота встречаемости генотипа CSN3^{BB} составила 1,1%, в то время, как у ремонтных бычков, содержащихся на элевере РУСХП «Оршанское племпредприятие», она была несколько выше - 3,1 %. В среднем по популяциям быков-производителей и ремонтных бычков частота встречаемости этого генотипа составила лишь 1,8 %. Во всех оцениваемых популяциях племенных животных фактическое распределение генотипов соответствовало теоретически ожидаемым значением, что свидетельствует об отсутствии нарушения генетического нарушения по локусу гена каппа-казеина, а также об отсутствии преобладающего отбора по белковомо-лочности.

Следует отметить, прослеживающуюся тенденцию более низкой концентрации аллеля CSN3^B у быков-производителей голландского корня. Так, в среднем по этим линиям частота встречаемости данного аллеля составила 9,9% и отсутствовали особи с генотипом CSN3^{BB}, в то время, как по линиям голштинского корня — 15,8%. В целом, полученные в ходе исследований результаты свидетельствуют о том, что селекция животных проводится на основе традиционных методов оценки молочной продуктивности, без учета генетических факторов, оказывающих значительное влияние на качественный состав молочных белков. В то же время, наличие животных с генотипом CSN3^{BB} дает возможность совершенствования отечественного скота в направлении улучшения качества молока и повышения белковомолочности при использовании быков-носителей аллеля CSN3^B.

Однако в исследуемых популяциях коров наблюдается более высокая частота встречаемости животных с генотипом CSN3^{BB} (табл. 5).

Таблица 5. Генетическая структура различных популяций коров по гену каппа-казеина

Принадлежность	n	Частота встречаемости генотипов			
115883 C420 PM 15420 PM		CSN3 ^{AA}	CSN3 ^{AB}	CSN3BB	
п/з «Красная Звезда»	324	72,4	25,9	1,9	
РСУП «Заречье»	144	70,8	27,1	2,1	
ЗАО «Ольговское»	380	69,5	20,5	4,2	
СПК «Обухово»	80	63,0	30,9	6,1	
э/б «Жодино» ф. Жажелка	462	74,3	24,2	1,5	
э/б «Жодино» ф. Березовица	197	64	32	4,0	
«Новый Двор-Агро»	81	30,0	70,0		
«Новый Двор-Агро»*	81	67,6	26,5	5,9	

^{*} Белорусская чернопестрая порода, Красная белорусская породная группа

Установлена тенденция увеличения численности животных предпочтительного генотипа в высокопродуктивных стадах (ЗАО «Ольговское» - 4,2% и СПК «Обухово» - 6,1%). Не выявлено животных генотипа CSN3^{BB} в популяции коров «Новый Двор-Агро», характеризующейся средним уровнем продуктивности.

Результаты тестирования свидетельствуют о необходимости проведения селекции, на увеличение концентрации аллеля ${\rm CSN3}^{\rm B}$ и частоты встречаемости животных с генотипом ${\rm CSN3}^{\rm BB}$, для интенсификации селекционного процесса, направленного на увеличение белковомолочности черно-пестрой породы крупного рогатого скота.

Литература

- 1. Баршинова, А.В. Полиморфизм гена каппа-казеина и его связь с хозяйственнополезными признаками скота красно-пестрой породы:: автореф. ... дис. канд. биол. наук: 06.02.01 / А.В. Баршинова; Лесные поляны Московской области, 2005. 19 с.
- 2. Иолчев Б., Левина Г., Миносян Т., Кондрахин В., Никольская Л. Влияние локуса каппа-казеина на продуктивность коров. // Молочное и мясное скотоводство. 2003. №3. С.34-35.
- 3. Калашникова Л.А. и др. Влияние генотипа каппа-казеина на молочную продуктивность коров черно-пестрой породы // Зоотехническая наука Беларуси /: Сборник научных трудов. Гродно, 2004. Т. 39. С. 50-55.
 - 4. Миносян, Т. Метод ДНК-диагностики для маркирования животных по локусу каппа-казеина // Молочное и мясное скотоводство. 2003. №3. С.38-40.
- 5. Юхманова Н., Калашникова Л.А. Влияние каппа-казеина на качество молока и его сыропригодность. // Молочное и мясное скотоводство. 2004. №8. С.24-25.

POLYMORPHISM OF A GENE OF KAPPA-CASEIN IN POPULATIONS OF MILK CATTLE OF BELARUS AND ITS INTERRELATION WITH MILK EFFICIECY AND TEHNOLOGICAL OROPERTIES OF MILKK

T.I. Epishko, L.A. Tanana¹, O.A. Epishko, V.V. Peshko¹ R.V. Trahimhik¹

«Polesski state university», Pinsk, Belarus

¹«Grodno state agrarian university», Grodno, Belarus

Researches establish pattern of positive influence allele CSN3^B and genotype CSN3^{BB} on augmentation of milk efficiency, the fiber maintenance in milk and its technical characteristics. It is offered to use genotypes of a gene of kappa-casein as DNA-markers having great value for perfection of milk cattle of Belarus on quality of milk and its technological properties and simultaneously to enlarge concentration allele CSN3^B and genotype CSN3^{BB} in populations of bulls of manufacturers and cows.

СОДЕРЖАНИЕ

П.Н. Прохоренко, А.В. Егиазарян . История создания и научные достижения всероссийского научно-исследовательского института	
генетики и разведения сельскохозяйственных животных	3
В.В.Калашников. Научное обеспечение развития животно-	
водства в Российской Федерации	12
селекции в молочном скотоводстве	18
потенциала продуктивности при разных условиях содержания О.В. Тулинова, Е.Н. Васильева, Б.А. Сервах. Продуктивность коров айрширской породы с разной классификационной оценкой	22
их экстерьера	26
использование ее в молочном скотоводстве	33
породы	37
продуктивности и качества животных	45
препотентности быков производителей	51
Чернушенко, Н.С. Петкевич . Современное состояние и перспектива развития скотоводства Смоленщины	56
Ю.И. Скляренко , Р.В. Братушка . Формирование продуктивных и племенных качеств высокопродуктивных коров украинской	
В.П. Ткачук, И.З. Сирацкий, Е.И. Федорович, Е.В. Бойко,	61
В.В. Федорович. Экстерьерные показатели помесей, полученных от скрещивания коров украинской черно-пестрой молочной породы	
с быками-производителями украинских мясных пород	66
тельности стельности	72
Л.В. Полевой, Ж.В. Столяр. Молочная продуктивность и показатели воспроизводства у коров-первотелок украинской черно-	
пестрой породы в зависимости от экстерьерно-	unitorn)
в.м. Кузнецов, Н.В. Вахонина. Система рекуррентного	76
разведения для исчезающих пород скота	81

Б.П. Завертяев, В.П. Прожерин, Ю.М. Мохнаткина.	
Прогнозирование результатов отбора холмогорских коров по	
признакам молочной продуктивности	85
Л.Р. Максимова, Л.П. Шульга. Генетическая экспертиза	
происхождения крупного рогатого скота в Карелии	90
Л.В. Романенко, В.И. Волгин. Кормление высокопродуктивных	
молочных коров	94
Л.В. Романенко, В.И. Волгин, З.Л. Федорова . Минеральновитаминное питание голштинизированных телок черно-пестрой	
породы	100
Б.И. Протасов, И.М.Комиссаров. О стимуляции проявления	
генетического потенциала продуктивности животных	105
А.С. Митюков. Принципы создания отрасли мясного	o to the second
скотоводства	110
В.М. Кузнецов . BLUP АМ для племенной оценки	
свиней.	115
В.П. Клемин, М. Яндиев. Состояние племенной базы по	110
свиноводству в Северо-Западном регионе России	119
О.Ю. Рудишин, В.А. Бекенев, Ж.В. Медведева, В.П. Клемин.	
Повышение генетического потенциала стад свиней путем	104
разработки селекционных индексов.	124
А.И. Калугина, Н.А. Зиновьева, А.В. Доцев, К.М. Шавырина Влияние происхождения на воспроизводительные качества свиней	
крупной белой породы	129
В. В. Калашников, А. М. Зайцев. Генетика и селекция в	127
коневодстве	134
Н.П. Платонова, И.В. Гончаренко. Повышение конкуренто-	
способности спортивного коневодства	140
В.А. Забродин, Т.М. Романенко, К.А. Лайшев. Особенности	
экстерьера северных оленей острова Колгуев и малоземельской	
тундры	144
А.В. Молчанов. Аминокислотный состав мяса чистопородного и	
помесного молодняка овец	148
А.Ф. Яковлев, Н.В Дементьева, В.И. Тыщенко, В.П.	
Терлецкий. Генетическое разнообразие и дивергенция	
генофондных пород кур	153
А.Г. Бычаев. Генетико - статистические параметры оценки	
продуктивных качеств птицы	159
И.А. Паронян, О.П. Юрченко, А.Б. Вахрамеев. Выведение	
синтетических популяций - эффективный метод использования	
генофонда кур	165

А.Е. Болгов, Н.А. Лери, В.Ю. Шарапова, О.А. Новожилова.	
Использование добавок шунгита для повышения степени	
реализации генетического потенциала яйценоскости кур Е.А. Олексиевич, Р.М. Рустенова . Инфекционные заболевания,	170
приводящие к бесплодию коров	176
В.Б. Лейбова, В.М. Лиховая. Влияние рациона на активность	
ферментов и репродуктивную функцию коров черно-пестрой	
д.А. Буханцева, С.А. Харитонов. Влияние производных	181
бензимидазола на переживаемость сперматозоидов быков	184
Е.А. Олексиевич, А.Р. Рустенов, А.Т.Мусабеков, Л.Г. Мороз	
Использование диализной камеры при хранении спермы хряков	187
Н.Н. Куценко, Г.Н. Сердюк, Л.В. Карпова. Воздействие	
электромагнитного излучения на спермопродукцию хряков, ее	
качество и оплодотворяющую способность	192
Т.И. Епишко, Л.А. Танана, О.А. Епишко, В. В. Пешко, Р.В.	
Трахимчик. Полиморфизм гена каппа-казеина в популяциях	
молочного скота Беларуси и его взаимосвязь с молочной	194
продуктивностью и технологическими свойствами молока	202
В.Н. Стефанова. Анализ генома свиньи методом FISH Т.И. Кузьмина, Г.В. Мурза, О.П. Маташина, Н.О. Новикова.	202
Селекция донорских ооцитов свиней на основе ВСВ-теста	207
В.Ю. Денисенко, Т.И. Кузьмина. Эффект соматотропина на выход Ca ²⁺ из внутриклеточных депо ооцитов свиней	212
А.О. Тулякова, Е.В. Белоглазова, Д.В. Белоглазов, Н.А.	212
Волкова Л.А. Волкова, Н.А. Зиновьева, Л.К. Эрист. Эффектив-	
ность использования ретровирусных векторов для локального	217
трансгенеза кур	211
Депонирование абдоминального жира у бройлеров: поиск генов-	221
кандидатов.	221
В.Г. Бавин, В.З. Тарантул, Б.К. Тур, К.В. Целютин, О.П.	
Юрченко, А.Ф. Яковлев. Модификация генома млекопитающих и	
птиц сперматозоидами, трансформированными геном зеленого флуоресцентного белка.	228
Г.И. Тюпкина, К.А. Лайшев. Применение ультразвука для	220
извлечения биологически активных веществ из пантов северных	
оленей	235
А.Е. Болгов, А.Ю. Волкова. Селекционные и технологические	TO CALLED
факторы развития садкового рыбоводства в Карелии	239

Генетика и селекция в животноводстве: вчера, сегодня, завтра Материалы научной конференции, посвященной 70-летию образования института, 9-11 июня 2010 г.

Ответственный за выпуск: Э.Э. Магон Компьютерная верстка: Ю.Г. Турлова

В авторской редакции

Подписано в печать 08.09.10 г. Формат 60×84 1/16. Печ. л. 15. Тираж 100 экз. Заказ

Отпечатано на ризографе ГНУ СЗНИИМЭСХ