УДК 621.081

Вишняков Ю.М.

Проверка непротиворечивости исходных описаний конечных автоматов

В 60-70-х годах на теорию конечных автоматов (КА), как универсальный инструментарий описания и синтеза цифровых схем, возлагались большие надежды. Однако ограничили технологического базиса и информационные технологии того времени Абстрактный синтез так и остался предметом теоретических изысканий. Сегодня в автоматизированном проектировании происходит интенсивный переход к интегрированным уровнях. В таких системах наряду со стандартными средствами проектирования топологии и догического синтеза. Таким образом сегодня сформированы практические потребности и автоматизированном проектировании. Однако в этом плане она должна быть переработана в контексте сквозного автоматизированного проектирования.

В рамках этой цели предлагаемая работа развивает абстрактный синтез в части построения непротиворечивых описаний КА на языке регулярных выражений.

Пусть заданы входной $X=\{X_1,X_2,...,X_n\}$ и выходной $Y=\{Y_1,Y_2,...,Y_m\}$ алфавиты. КА перерабатывает входные слова (цепочки) $\alpha \in X^*$ в выходные $\beta \in Y^*$ в соответствии с алфавитным (автоматным) оператором $\beta=F(\alpha)$ (А-оператор). Доказано, что обрабатываемые

КА множества цепочек, относятся к классу регулярных множеств (РМ), которые задаются через правила их порождения, называемые регулярными выражениями (РВ) [1].

В алгебре РВ по определению \emptyset , λ (пустая цепочка), X_1 , X_2 , X_n являются элементарными РВ. Если e_1 , e_2 , e_2 - РВ, то результаты операций $e_1^*e_2$ (конкатенации), $e_1^*e_2$ (ИЛИ), $\{e\}$ (Клини), $\{e\}$ (круглые скобки) также являются РВ. Также отметим, что порождаемое множество цепочек или язык РВ е обозначают через $\{e\}$.

Представим А-оператор через систему РВ (СРВ). Для этого выделим в X^* подмножества регулярных цепочек E_1 , E_2 , E_m (в общем случае бесконечных) таким образом, чтобы цепочка $\alpha \in E_1$ приводила к появлению на выходе КА буквы Y_1 , $\alpha \in E_2$ - буквы Y_2 , $\alpha \in E_m$ -. Y_m . Для случая $\alpha \in X^* \setminus (E_1 \cup E_2 \cup ... \cup E_m)$ определим дополнительную букву Y_{m+1} . Также введем условие непротиворечивости $E_i \cap E_j = \emptyset$ (i,j=1..m, i \neq j). Представим каждое множество E_i порождающим его регулярным выражением (РВ) e_i ($|e_i| = E_i$). Тогда представляющая КА система соотношений вида (1) и называется СРВ:

$$\begin{cases} Y_{1} \Leftrightarrow e_{1}, \ Y_{2} \Leftrightarrow e_{2}, \quad , \ Y_{m} \Leftrightarrow e_{m}; \\ Y_{m+1} \Leftrightarrow X^{*} \setminus (E_{1} \cup E_{2} \cup ... \cup E_{m}); \\ E \cap E_{j} \Leftrightarrow \varnothing(i, j = 1, ..., m, \ i \neq j). \end{cases}$$

Поскольку взаимно однозначное соответствие между языком и порождающим его PB отсутствует (например, PB a{a} и {a}а порождают различными способами один и тот же язык), построение непротиворечивой СРВ требует далеко нетривиальных действий. И в этой связи можно предположить, что средства исследования непротиворечивости СРВ нужно искать вне алгебры PB.

Рис.1 Система переходов

Ближайшей моделью к PB, которой может быть промоделирован разбор цепочек, является система переходов (СП), дуги которой взвешены буквами входного алфавита. КА с выходным алфавитом $Y=\{0,1\}$, распознающий язык lel, называют конечным распознавателем (КР). Представление КР в виде диаграммы состояний (рис.1), в которой начальная вершина S и конечная вершина Z связаны дугой е называется системой переходов (СП). Здесь любая цепочка $\alpha \in \text{lel}$ переводит KA из состояния S в состояние Z [2].

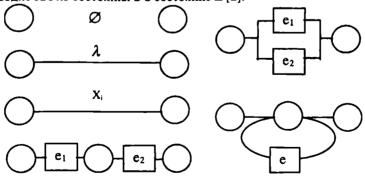


Рис. 2 СП элементарных РВ

СП элементарных РВ приведены на рис.2. В соответствии с алгеброй РВ СП любого РВ е можно представить в виде композиции элементарных СП. Такую СП будем называть приведенной и обозначать через СП $_{\rm n}$. Введем на СП $_{\rm n}$ ряд понятий.

Определение 1. Если из некоторого состояния Q исходит λ -дуга в состояние A_1 , из состояния A_1 в состояние A_2 и т.д. до состояния A_2 и за состояния A_3 из состояния A_4 нет исходящих A_4 то будем говорить, что состояние Q связано с состоянием A_4 линейным A_5 путем.

Определение 2. Если из некоторого состояния Q исходит λ -дуга в состояние A_1 , а из состояния A_1 в состояние A_2 и т.д. состояния A_k , а из состояния A_k в состояние Q, то будем говорить, что состояние Q, A_1 , A_2 ,..., A_k входят в один и тот же кольцевой λ -путь.

Длиной λ-пути будем называть число входящих в него λ-дуг.

Определение 3. Блоком состояний (БС) для некоторого состояния Q БС(Q) назовем множество состояний, включающих само состояние Q и все состояния , входящие в λ -пути, исходящие из состояния Q.

Если из состояния Q не исходит λ -путей, то $BC(Q) = \{Q\}$. В дальнейшем BC(Q), включающий более чем одно состояние, будем обозначать λ - BC(Q).

Определение 4. Если из состояния Q исходит один или несколько λ -путей единичной длины, то λ - BC(Q) назовем простым, в противном случае составным.

Введем на СП функцию разбора μ , представляющую отображение {БС} \times X \rightarrow БС. Ее по аналогии с функцией переходов запишем в виде $\text{БС}=\mu(\text{БC}(Q),x_i)$. Цепочка α допускается KA, если существует функция разбора вида $\text{БC}(Z_i)=\mu(\text{БC}(S),\alpha)$, где S - начальное состояние, Z_i - заключительное состояние СП KA.

Пусть задана СРВ e_1 , e_2 , ..., e_m и для каждого РВ выполнено независимое построение СП $_n$. Здесь S_1 , S_2 , ..., S_m начальные и Z_1 , Z_2 , ..., Z_m заключительные состояния соответствующих СП $_n$. Введем следующую проверочную таблицу (ПТ), на основе которой будем одновременно строить функцию разбора для всех РВ. ПТ содержит m+1 столбец, где 1,2,...,m столбцы, соответствуют буквам входного алфавита X, а 0-столбец представляет БС, именующие строки. Множество строк ПТ разбито на группы, каждая из которых может содержать до m строк по числу РВ, и представляет БС для всех РВ, полученных на некотором шаге построения функции разбора для данного БС и входной буквы.

Алгоритм проверки непротиворечивости СРВ.

- 1. Построить пустую ПТ, сформировать $EC(S_1)$, $EC(S_2)$,..., $EC(S_m)$ и поименовать ими первую группу строк;
 - 2. Для всех букв хі ∈ Х вычислить функцию разбора;
- 3. Образовать новую группу строк и поименовать их новыми БС, полученными в п.2 и не содержащими заключительных состояний Z₁.
- 4. Повторять п.2 до тех пор, пока не перестанут образовываться новые БС, не содержащие заключительных состояний.

Выход: СРВ противоречива, если на некотором шаге для одной и той же входной буквы получены более чем один БС, содержащий заключительные состояния.

В качестве примера ниже представлены проверяемая на непротиворечивость СРВ, СП, входящих в нее РВ (рис.4), и соответствующая ПТ:

$$\begin{cases} e_1 = a \{ b \} c \\ e_2 = a \{ b \} d \end{cases}$$
 (2)

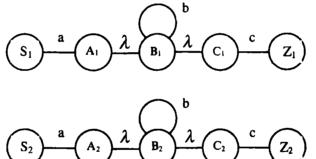


Рис.3 СП элементарных

Как это видно из построения ПТ СРВ (2) является непротиворечивой.

Итак, предлагаемая в работе процедура проверки на непротиворечивость исходных описаний КА, может быть положена в основу построения одной из функциональных частей программной подсистемы логического синтеза интегрированной инструментальной среды САПР. Это позволит на ранних этапах проектирования выявить корректность исходного описания объекта проектирования.

Литература

- 1. Вавилов Е.Н., Портной Г.П. Синтез схем электронных цифровых машин. М.: Сов.радио, 1963. 440 с.
- 2. Грис Д. Конструирование компиляторов для цифровых вычислительных машин. М.: Мир, 1975, 545 с.
 - 3. Вишняков Ю.М. Инструментарий разработчика СБИС. Таганрог: ТРТУ, 1993. 178 с.

ИЗВЕСТИЯ ТРТУ

(Таганрог)

Новое название: Известия ЮФУ. Технические науки (с 2007 года) Номер: 2 (8) Год: 1998 Тема выпуска: Интеллектуальные САПР Название статьи Стр. Цит. ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ Купейчик В.М. 4-7 15 4 ТРАССИРОВКА В КОММУТАЦИОННОМ БЛОКЕ НА ОСНОВЕ ГЕНЕТИЧЕСКИХ ПРОЦЕДУР Лебелев Б.К. 7-21 1 4 НАДЪЯЧЕЕЧНАЯ ТРАССИРОВКА НА ОСНОВЕ ГЕНЕТИЧЕСКИХ ПРОЦЕДУР Давиденко В.Н. 22-28 1 ПРИМЕНЕНИЕ ГРУППИРУЮЩЕГО ГЕНЕТИЧЕСКОГО АЛГОРИТМА ДЛЯ РЕШЕНИЯ ЗАДАЧ ОДНОМЕРНОЙ УПАКОВКИ 28-33 0 Бондалетов А.В. ПЛАНИРОВАНИЕ ПОСТАВОК ТОРГОВОЙ ФИРМЕ С ИСПОЛЬЗОВАНИЕМ ИМИТАЦИИ И ГЕНЕТИЧЕСКОГО АЛГОРИТМА 33-43 n 1 Емельянов В.В., Захаров П.А. ОПТИМИЗАЦИЯ ОТБОРА ОПТИМАЛЬНЫХ ПРИЗНАКОВ НА ОСНОВЕ ПРИМЕНЕНИЯ МЕТОДОВ МОДЕЛИРОВАНИЯ ЭВОЛЮЦИИ ДЛЯ ЗАДАЧИ РАСПОЗНАВАНИЯ ТЕКСТА 44-49 0 4 Хашковский В.В., Толкачёв А.Н. ГЕНЕТИЧЕСКИЙ АЛГОРИТМ КОМПОНОВКИ НА ОСНОВЕ ОБОБЩЕННОГО КРИТЕРИЯ Рябец М.Н. 49-51 0 Ψ **GENETIC APPROACH TO TRAINING NEURAL NETWORKS: APPLICATION TO A FORECAST** OF STOCK MARKET VOLATILITY 51-53 0 Dergatchev S. ПЕРСПЕКТИВНЫЕ АРХИТЕКТУРЫ ГЕНЕТИЧЕСКОГО ПОИСКА Курейчик В.В. 53-56 3 РАЗРАБОТКА МЕТОДОВ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК ГЕНЕТИЧЕСКОГО АЛГОРИТМА РАСПРЕДЕЛЕНИЯ ЦЕПЕЙ ПО СЛОЯМ В МСМ 0 56-59 Щеглов С.Н., Мухлаев А.В., Кулинский В.А. ГЕНЕТИЧЕСКИЙ АЛГОРИТМ ГЛОБАЛЬНОЙ ТРАССИРОВКИ Лебедев О.Б. 60-69 0 4 РЕШЕНИЕ ЗАДАЧИ ОДНОМЕРНОЙ УПАКОВКИ С ПОМОЩЬЮ ПАРАЛЛЕЛЬНОГО ГЕНЕТИЧЕСКОГО АЛГОРИТМА 69-75 U Мухлаева И.В. АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ ВИЗУАЛИЗАЦИЯ В ГИС ПРИ НАЛИЧИИ ПРОСТРАНСТВЕННЫХ ОГРАНИЧЕНИЙ Самойлов Л.К., Беляков С.Л., Сидоренко М.П. 76-83 1 О ПОВЫШЕНИИ ТОЧНОСТИ ДИСКРЕТИЗАЦИИ КРИВЫХ ПРИ ОЦИФРОВКЕ ГЕОГРАФИЧЕСКИХ КАРТ 83-85 0 4 Белякова М.Л. УНИВЕРСАЛЬНЫЙ ИНФОРМАЦИОННЫЙ МОДУЛЬ КАК ОСНОВА ДЛЯ ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ О ПРОЕКТНЫХ ПРОЦЕДУРАХ В САПР РЭА 85-86 0 Мешков В.Е., Берёза А.Н. УНИВЕРСАЛЬНЫЙ АЛГОРИТМ ЗАМЕНЫ В ПОЛИНОМЕ ПРОИЗВОЛЬНОГО ПОРЯДКА ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ НА КОМПЛЕКСНУЮ 86-89 0 Целигоров Н.А. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА ДЛЯ ВЫВОДА КРИТЕРИЕВ АБСОЛЮТНОЙ УСТОЙЧИВОСТИ МНОГОМЕРНЫХ НЕЛИНЕЙНЫХ ИМПУЛЬСНЫХ АВТОМАТИЧЕСКИХ 89-92 0 СИСТЕМ

	<i>Целигоров Н.А.</i> СРЕДСТВА ПРОГРАММНОЙ ПОДДЕРЖКИ САПР, МОДЕЛИРОВАНИЯ И СИНТЕЗА		
	ЭЛЕКТРОННЫХ СХЕМ НА ОСНОВЕ ДИФФЕРЕНЦИАЛЬНЫХ ФУНКЦИОНАЛЬНЫХ	93-97	4
	ПОЛИНОМОВ <i>Глушань В.М., Зинченко Л.А.</i>		
	АЛГОРИТМ УДАЛЕНИЯ ЦИКЛОВ В ГРАФЕ ВЕРТИКАЛЬНЫХ ОГРАНИЧЕНИЙ ЗАДАЧИ ТРАССИРОВКИ МНОГОСЛОЙНОГО КАНАЛА Марченко А.М., Плис А.П.	98-102	0
•	МОДЕЛИ ТЕОРИИ ГРАФОВ ДЛЯ ВЫДЕЛЕНИЯ КОНТУРОВ ПО ГРАДИЕНТНОМУ ИЗОБРАЖЕНИЮ Броневич А.Г., Зюзерова Н.С.	103-106	0
	ОБ ОДНОМ СПОСОБЕ ВЕКТОРНОГО И АНАЛИТИЧЕСКОГО ПРЕДСТАВЛЕНИЯ КОНТУРА ИЗОБРАЖЕНИЯ Каркищенко А.Н., Лепский А.Е., Безуглов А.В.	107-112	5
	ОБ ОДНОЙ МОДЕЛИ ДЛЯ ОПТИМАЛЬНОГО ВЫДЕЛЕНИЯ НАКЛОННЫХ КРАЕВ ИЗОБРАЖЕНИЙ Бутенков С.А.	112-116	1
	ВАРИАЦИОННЫЙ ПОДХОД К СГЛАЖИВАНИЮ И ОПРЕДЕЛЕНИЮ ХАРАКТЕРНЫХ ТОЧЕК ЧЕРНО-БЕЛЫХ ИЗОБРАЖЕНИЙ Каркищенко А.Н., Броневич А.Г., Зюзерова Н.С.	117-121	2
	ПРИБЛИЖЕННЫЕ МЕТОДЫ ПЕРЕХОДНОГО АНАЛИЗА МЕЖСОЕДИНЕНИЙ СВЕРХБЫСТРОДЕЙСТВУЮЩИХ ЦИФРОВЫХ СБИС Коробков А.И., Золотов В.П.	121-127	0
□ ②	РАЗРАБОТКА ПРОГРАММЫ ПРОЕКТИРОВАНИЯ ТОПОЛОГИИ ЦЕПЕЙ БИС НА ОСНОВЕ АЛГОРИТМА ФОРМИРОВАНИЯ СЕТИ СОЕДИНЕНИЙ Ceprees A.C.	127-129	0
□ ②	ЦИФРОВОЕ ПРОГНОЗИРОВАНИЕ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ФУНКЦИЙ <i>Гридина Е.Г.</i>	129-131	0
□ ②	ГРАФИЧЕСКИЙ РЕДАКТОР ТРЁХМЕРНЫХ СТРУКТУР Гладков Л.А., Коновалов О.В.	131-138	0
	АЛГОРИТМ ПОСТРОЕНИЯ ДЕРЕВЬЕВ ШТЕЙНЕРА <i>Калашников В.А., Анисимов А.А.</i>	139-147	0
	МЕТОД АППАРАТУРНОЙ ИМИТАЦИИ СЛУЧАЙНЫХ ЧИСЕЛ, ОТНОСЯЩИХСЯ К НЕЧЁТКИМ МНОЖЕСТВАМ Гришков А.Ф., Маргелов А.А., Маргелов А.В.	148-149	0
	ПЕРЕВОД СТРУКТУРНОГО ПРОЕКТА ЦИФРОВОЙ СИСТЕМЫ НА РАЗЛИЧНЫЕ УРОВНИ ИЕРАРХИИ Пилипушко Е.М.	150-152	0
	МЕТОД ПОБЛОЧНОГО ВЫСОКОУРОВНЕВОГО СИНТЕЗА ЦИФРОВЫХ СИСТЕМ <i>Попов Д.И.</i>	152-154	0
	ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ САМОТЕСТИРУЕМЫХ СБИС <i>РОДЗИН С.И.</i>	155-158	1
	РАСЧЕТ УРОВНЯ НОРМАЛИЗАЦИИ СЛУЧАЙНЫХ ПРОЦЕССОВ ПРИ ПРОХОЖДЕНИИ ЧЕРЕЗ ЛИНЕЙНЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ Самойлов Л.К., Турулин И.И.	159-162	0
□ ②	ПРОВЕРКА НЕПРОТИВОРЕЧИВОСТИ ИСХОДНЫХ ОПИСАНИЙ КОНЕЧНЫХ АВТОМАТОВ Вишняков Ю.М.	162-165	0
	ЛИКВИДАЦИЯ ВЕРТИКАЛЬНЫХ КОНФЛИКТОВ МЕЖСОЕДИНЕНИЙ В КАНАЛЕ ПЕРЕД ТРАССИРОВКОЙ <i>Мухлаев А.В., Щеглов С.Н., Сеченов М.Д.</i>	166-172	0
	COMPARING OBERON AND JAVA BY A SIMPLE DATA STRUCTURE Heuberger P., Malioukov A.	172-179	0
	ЗАДАЧА ВЫБОРА СТРАТЕГИИ ДЛЯ ОРГАНИЗАЦИИ В УСЛОВИЯХ ПРОТИВОДЕЙСТВИЯ ВНЕШНЕЙ СРЕДЫ Чурова А.Г.	179-182	0

4	ПЕРСПЕКТИВЫ РАЗВИТИЯ СЕТЕВЫХ САПР НА БАЗЕ ГЛОБАЛЬНОЙ СЕТИ INTERNET Янушко В.В.	182-187	1
	АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМ В СЕЛЬХОЗМАШИНОСТРОЕНИИ <i>Ткачев А.Г.</i>	187-189	0
	МОДИФИКАЦИЯ АЛГОРИТМА ОПРЕДЕЛЕНИЯ КЛИК ГРАФА С ПАРАМЕТРИЧЕСКОЙ АДАПТАЦИЕЙ Литвиненко В.А., Черненко И.Ю.	190-193	0
	САD/САМ ADEM - НАИЛУЧШАЯ ОТЕЧЕСТВЕННАЯ СИСТЕМА ДЛЯ МЕЛКОСЕРИЙНОГО ПРОИЗВОДСТВА Кашуба Л.А., Чекалин О.В.	193-202	0
•	ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ВАРИАНТОВ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАЗРАБОТАННЫХ МЕТОДОМ СТРУКТУРНО-ПАРАМЕТРИЧЕСКОГО СИНТЕЗА В СИСТЕМЕ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ Кашуба Л.А., Новокрещенова В.А.	202-206	0
	искусственный интеллект		
	АНАЛИЗ И ВЫБОР РЕШЕНИЙ НА ОСНОВЕ НЕЧЕТКОЙ МОНОТОННОЙ ЭКСПЕРТНОЙ ИНФОРМАЦИИ Берштейн Л.С., Боженюк А.В.	207-210	2
	ПОПОЛНЕНИЕ ЗНАНИЙ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ НА ОСНОВЕ КАЗУАЛЬНО- ЗАВИСИМЫХ РАССУЖДЕНИЙ Берштейн Л.С., Мелехин В.Б.	210-214	0
	ЛОГИЧЕСКИЙ ВЫВОД НА ОСНОВЕ НЕЧЕТКОЙ МЕТАИМПЛИКАЦИИ <i>Мелихова О.А.</i>	214-217	0
	ПРИНЯТИЕ РЕШЕНИЙ В ЭКОЛОГИЧЕСКОЙ ГЕОИНФОРМАЦИОННОЙ СИСТЕМЕ НА ОСНОВЕ НЕЧЕТКОЙ МОДЕЛИ КЛАССИФИКАЦИИ Целых А.Н., Тимошенко Р.П.	217-220	3
	ГИБРИДНЫЕ ИНТЕЛЛЕКТУАЛЬНЫЕ ЧЕЛОВЕКО-МАШИННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И КОГНИТИВНЫЕ ПРОЦЕССЫ Сеченов М.Д.	220-225	2
ı	МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ В ОБЛАСТИ ИНФОРМАТИЗАЦИ	и и сапр	
	ИНФОРМАТИЗАЦИЯ НАУКОЕМКИХ ТЕХНОЛОГИЙ ОБУЧЕНИЯ НА ОСНОВЕ СИСТЕМЫ РИТМ ПРИ МНОГОУРОВНЕВОМ ОБРАЗОВАНИИ ВИШНЯКОВ Ю.М., РОДЗИН С.И.	226-230	5
•	НЕКОТОРЫЕ ПРОБЛЕМЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ НА ОСНОВЕ ПЕРСПЕКТИВНЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Курейчик В.М., Нужнов Е.В.	231-235	2
•	СОВЕРШЕНСТВОВАНИЕ КОНЦЕПЦИИ ОБУЧЕНИЯ В ТЕХНИЧЕСКОМ УНИВЕРСИТЕТЕ НА ПРИМЕРЕ ПОДГОТОВКИ СПЕЦИАЛИСТОВ ПО САПР Нужнов Е.В., Заграй Н.П.	236-238	0
	О СИНЕРГЕТИЧЕСКОЙ КОНЦЕПЦИИ ВЫСШЕГО ОБРАЗОВАНИЯ <i>Колесников А.А.</i>	238-242	13
	ИСПОЛЬЗОВАНИЕ ДИНАМИЧЕСКИХ МОДЕЛЕЙ И НЕЧЕТКОЙ СИТУАЦИОННОЙ МОДЕЛИ УПРАВЛЕНИЯ ДЛЯ ОРГАНИЗАЦИИ ПРОЦЕССА ОБУЧЕНИЯ ВОВК $C.\Pi.$	242-244	2
	ТЕХНОЛОГИЯ ВЫБОРА ЭФФЕКТИВНЫХ ТАКТИК ПРЕПОДАВАТЕЛЯ ПРИ МОДЕЛИРОВАНИИ ПРОЦЕССА ОБУЧЕНИЯ ВОВК С.П.	244-248	0
	НЕКОТОРЫЕ АСПЕКТЫ ПРИМЕНЕНИЯ УМК "МОДЕЛИРОВАНИЕ ЦИФРОВЫХ СИСТЕМ НА ЯЗЫКЕ VHDL" В УЧЕБНОМ КУРСЕ "ОСНОВЫ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ" $\mathit{Ta6epkuh}\ \Pi.A.$	248-250	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ "ИНТЕЛЛЕКТУАЛЬНЫЕ СА	ПР-97"	
	ALLOCATION PROBLEM USING GENETIC ALGORITHM Dergatchev S., Kureichik V.	251	0
	ГЕНЕТИЧЕСКИЙ АЛГОРИТМ ГРУППИРОВАНИЯ ЭЛЕМЕНТОВ Курейчик В.В.	252	0
	ЭВОЛЮЦИОННЫЕ ВЫЧИСЛЕНИЯ В САПР Курейчик В.В.	252-253	0
	1./pei: 1111 2121		
	О ВОЗМОЖНОСТЯХ ЯЗЫКА ФУНКЦИОНАЛЬНО-ЛОГИЧЕСКОГО ПРОГРАММИРОВАНИЯ FLOGOL	254-255	0

_	Бенеташвили А.Г. ФУНКЦИОНАЛЬНОЕ И ПРОЦЕДУРНОЕ ПРОГРАММИРОВАНИЕ - ПУТИ ОБЪЕДИНЕНИЯ		
	Карпова Н.Н.	255-256	0
	ПРИМЕНЕНИЕ ГРУППИРУЮЩЕГО ГЕНЕТИЧЕСКОГО АЛГОРИТМА ДЛЯ РЕШЕНИЯ ЗАДАЧ ОДНОМЕРНОЙ УПАКОВКИ БОНДАЛЕТОВ А.В.	256-257	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ «ИНТЕЛЛЕКТУАЛЬНЫЕ СА	\ПР-97»	
	КОНЦЕПЦИЯ МАРКЕТИНГА, ОСНОВАННОГО НА ЗАКОНОМЕРНОСТЯХ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ (ИННОВАЦИОННЫЙ МАРКЕТИНГ) Бутенко Д.В., Бутенко Л.Н.	257-258	1
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ "ИНТЕЛЛЕКТУАЛЬНЫЕ СА	\ПР-97"	
	КОМПЬЮТЕРНАЯ ПОДДЕРЖКА АССОЦИАТИВНОГО ПОИСКА ИННОВАЦИОННЫХ РЕШЕНИЙ Бутенко Д.В., Рыбанов А.А., Чернухин А.В., Бутенко Л.Н.	258-259	1
	ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ ДЛЯ РЕШЕНИЯ НЕЛИНЕЙНЫХ ЗАДАЧ ТРАНСПОРТНОГО ТИПА Чернышев Ю.О., Басова А.В.	259-260	0
	ТЕХНОЛОГИЯ РАСПРЕДЕЛЕННОГО ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМАХ ПРИНЯТИЯ РЕШЕНИЙ Еремеев А.П.	260-261	0
	ЭЛЕКТРОННЫЙ УЧЕБНИК АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ <i>СИДОРКИНА И.Г.</i>	261	0
	ПРИМЕНЕНИЕ СЕРВЕРОВ INTRANET ДЛЯ ИНФОРМАЦИОННОЙ ПОДДЕРЖКИ УЧЕБНОГО ПРОЦЕССА Куликов Г.Г., Набатов А.Н., Камалова Л.З.	262	0
	РЕЧЕВОЕ УПРАВЛЕНИЕ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ <i>Крашенинников И.В., Афонин С.Л.</i>	262-263	0
	ПРЕДИКАТНО-АКТАНТНАЯ СТРУКТУРА МНОГОМЕРНЫХ БАЗ ДАННЫХ <i>Ахметсафина Р.З., Кабальное Ю.С., Карасев С.В.</i>	263-264	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ «ИНТЕЛЛЕКТУАЛЬНЫЕ СА	\ПР-97»	
	ЦЕНТРАЛИЗОВАННОЕ ТЕСТИРОВАНИЕ В САРАТОВСКОЙ ОБЛАСТИ В 1997 ГОДУ <i>Рыхлов В.С., Науменко Г.Ю., Бурмистрова Е.В.</i>	264	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ "ИНТЕЛЛЕКТУАЛЬНЫЕ СА	АПР-97"	
	ВЕРОЯТНОСТНО-СЕТЕВАЯ МОДЕЛЬ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ <i>Бакусов Л.М., Насыров Р.В., Султанов А.З.</i>	265	0
	ИСПОЛЬЗОВАНИЕ КЛЕТОЧНОЙ ЛОГИКИ ДЛЯ АЛГОРИТМОВ ОПТИМИЗАЦИОНЫХ ЗАДАЧ НА ГРАФАХ КНЯЗЬКОВ В.С., ВОЛЧЕНСКАЯ Т.В.	265-267	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ «ИНТЕЛЛЕКТУАЛЬНЫЕ СА	\ПР-97»	
	РАНЖИРОВАНИЕ ОБЪЕКТОВ НА ОСНОВЕ НЕЧЕТКОГО ОТНОШЕНИЯ С		
	ИНТЕНСИВНОСТЬЮ ПРЕДПОЧТЕНИЙ <i>Санжапов Б.Х.</i>	267	0
	ПРЕДСТАВЛЕНИЕ ФИЗИЧЕСКИХ ЗНАНИЙ ДЛЯ СИСТЕМ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ ТЕХНИЧЕСКИХ ОБЪЕКТОВ Давыдов Д.А., Фоменков С.А.	267-268	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ "ИНТЕЛЛЕКТУАЛЬНЫЕ СА	\ПР-97"	
	МЕТОДИКА СИНТЕЗА СРЕДСТВ РЕШЕНИЯ ЗАДАЧ ОПТИМИЗАЦИИ В ПОСТАНОВКЕ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ Костерин В.В., Давыдов Д.А.	268-269	0
	ТЕСТИРОВАНИЕ ПЛАНАРНОСТИ ГРАФА С ПОМОЩЬЮ МАТРИЦЫ ЕГО ЦИКЛОВ <i>Павлов Б.И., Гладков Л.А.</i>	269	0
	РАЗРАБОТКА ПОШАГОВОГО МЕТОДА ВЫБОРА ОПТИМАЛЬНОГО РЕШЕНИЯ В СИСТЕМАХ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА Ярченкова И.И., Дарманян А.П.	270	0
	РАЗРАБОТКА УЧЕБНО-МЕТОДИЧЕСКОГО КОМПЛЕКСА ДЛЯ ВУЗОВ ПО ОБУЧЕНИЮ РАБОТЕ В МЕЖДУНАРОДНОЙ СЕТИ INTERNET Филиппов М.В., Дарманян А.П.	270-271	0
	ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ В ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМАХ НА ОСНОВЕ ФОП ТЕХНОЛОГИИ Кулагина И.И.	271-272	0

	НЕЧЕТКАЯ МОДЕЛЬ ПРЕДСТАВЛЕНИЯ И ПРЕОБРАЗОВАНИЯ ЗНАНИЙ		
•	ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ <i>Мелихова О.А.</i>	272	0
	КОНЦЕПЦИЯ МАРКЕТИНГА, ОСНОВАННОГО НА ЗАКОНОМЕРНОСТЯХ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ (ИННОВАЦИОННЫЙ МАРКЕТИНГ) Бутенко Д.В., Бутенко Л.Н.	272-273	0
	ЭВОЛЮЦИОННЫЕ АЛГОРИТМЫ ОПТИМИЭАЦИИИ ИХ АВТОМАТНАЯ РЕАЛИЗАЦИЯ <i>Неймарк Ю.И., Рапопорт А.Н.</i>	273-274	0
	ПРОБЛЕМЫ ФОРМИРОВАНИЯ ВЕКТОРНЫХ ТРЁХМЕРНЫХ СТРУКТУР <i>Коновалов О.В., Гладков Л.А.</i>	274-275	1
	РАЗНЕСЕНИЕ НЕПЛАНАРНЫХ ГРАФОВ, ОПИСАННЫХ В УЗЛАХ РЕШЕТКИ, ПО СЛОЯМ, С ПРОВЕРКОЙ УСЛОВИЙ ПЛАНАРНОСТИ НА КАЖДОМ ПОЛУЧЕННОМ СЛОЕ Коновалов О.В., Гладков Л.А.	276	0
	АВТОМАТИЗИРОВАННЫЙ УЧЕБНЫЙ КОМПЛЕКС ПО ТЕОРИИ ПОЛЯ И СРЕДСТВА ДЛЯ ЕГО СОЗДАНИЯ И РАЗВИТИЯ $Peribeb$ $IO.\Gamma.$	276-277	0
	МОДЕЛИРОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В УЧЕБНОМ ПРОЦЕССЕ <i>ТИВКОВ М.А.</i>	277-278	1
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ «ИНТЕЛЛЕКТУАЛЬНЫЕ СА	ПР-97»	
	СТРУКТУРЫ ДАННЫХ ДЛЯ РЕШЕНИЯ ЗАДАЧ ТОПОЛОГИЧЕСКОГО ПРОЕКТИРОВАНИЯ СБИС <i>Мякота Е.И., Рыбальченко М.В.</i>	278-279	0
	К ВОПРОСУ ОРГАНИЗАЦИИ ДИАЛОГА В ЧЕЛОВЕКО-МАШИННЫХ СИСТЕМАХ <i>Сеченов М.Д., Мухлаев А.В.</i>	279-280	0
	ТЕЗИСЫ ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ "ИНТЕЛЛЕКТУАЛЬНЫЕ СА	ПР-97"	
	УМК "МОДЕЛИРОВАНИЕ ЦИФРОВЫХ СИСТЕМ НА ЯЗЫКЕ VHDL" В УЧЕБНОМ ПРОЦЕССЕ ДЛЯ СПЕЦИАЛЬНОСТИ "СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ" Таберкин $\Pi.A.$	280-281	0
	УЧЕБНО-ИССЛЕДОВАТЕЛЬСКАЯ САПР АВИАЦИОННЫХ ДВИГАТЕЛЕЙ С ЭЛЕМЕНТАМИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА <i>Сахабетдинов М.А., Жернаков С.В.</i>	281-282	0
	ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ В ТЕХНОЛОГИЧЕСКОМ ПРОЕКТИРОВАНИИ ОБЪЕКТОВ СЕЛЬХОЗМАШИНОСТРОЕНИЯ Ткачев А.Г.	282	0
	РАЗМЕЩЕНИЕ НА ОСНОВЕ ГЕНЕТИЧЕСКОЙ ЭВОЛЮЦИИ Лебедев О.Б.	283	0
	ГИПЕРТЕКСТОВАЯ АОС "МОДЕЛИРОВАНИЕ CAD/CAM" Кудряшова Э.Е.	283-284	0
	ПРИНЦИПЫ ИНТЕЛЛЕКТУАЛЬНОГО ОБМЕНА ГРАФИЧЕСКОЙ ИНФОРМАЦИЕЙ <i>Кучуганов В.Н., Шарапов В.А.</i>	284	0
	ГИБРИДНЫЕ СЕТИ ПЕТРИ КАК АППАРАТ СИТУАЦИОННОГО УПРАВЛЕНИЯ ПАРАЛЛЕЛЬНЫМИ ПРОЦЕССАМИ Кудряшова Э.Е., Медведев М.А., Самсонов Н.И.	285	0
	СИНЕРГЕТИЧЕСКАЯ ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ CAD/CAM <i>Кудряшова Э.Е.</i>	285-286	0
	повышение направленности генетического поиска с применением знаний о задаче Мухлаева И.В., Мухлаев А.В.	286-287	0
	ГЕНЕТИЧЕСКИЙ МЕТОД С ПРОЦЕССОМ СЕЛЕКЦИИ, ОСНОВАННЫМ НА ПРИНЦИПЕ ИМИТАЦИИ ОТЖИГА Ведерникова О.Г.	287-289	0
	ГЕНЕТИЧЕСКИЙ АЛГОРИТМ ДЛЯ ТЕХНОЛОГИЧЕСКИХ ОПЕРАЦИЙ РЕГУЛИРОВКИ И НАСТРОЙКИ ОБОРУДОВАНИЯ ТКАЧЕВ А.Г.	289	0

□	ПЕРЕРАСПРЕДЕЛЕНИЕ СОЕДИНЕНИЙ МЕЖДУ ВЫВОДАМИ НА ОСНОВЕ КОЛЛЕКТИВНОЙ АДАПТАЦИИ Лебедев Б.К.	290	0
	ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ МОДИФИЦИРОВАННОГО АЛГОРИТМА ОПРЕДЕЛЕНИЯ КЛИК ГРАФА Литвиненко В.А., Черненко И.Ю., Барковский Е.А.	291	0