УДК 579.64

МИКРОБИОЛОГИЧЕСКИЙ КОНТРОЛЬ ПОЧВ ПРИ ВОЗДЕЛЫВАНИИ ЯГОДНЫХ КУЛЬТУР

Д.А. Ерема

Научный руководитель – **С.В. Тыновец**, старший преподаватель **Полесский государственный университет**

Деятельность почвенных микроорганизмов играет большую *роль* в *плодородия почвы* и здоровье растений. Микроорганизмы участвуют в разложении органического вещества, формировании

структуры почвы и биологическом контроле фитопатогенов [1,2]. Оценка общего микробного числа (ОМЧ) служит важным индикатором биологической активности почвы и её экологического состояния.

Цель исследования: определить показатели ОМЧ почв при возделывании ягодных культур.

Материалы и методы: Для исследования ОМЧ были взяты образцы почв отобраные весной 2025 года с участков возделывания земляники садовой ($Frag\'aria \times$ ananássa) (образцы 1–4) и голубики высокорослой ($Vaccinium\ corymbosum\ L$.) (образцы 5–7) в Житковичском, Столинском и Пинском районах (метод «конверта» на глубине 0–5 см) [3,4]. Для определения ОМЧ из почвенной навески приготовили вытяжку, которую охладили при температуре 5–7 °С в течении 20–30 минут. Далее приготовили серию разведений до 10^{-4} . Для посева 0,2 мл вытяжки разведения 10^{-4} вносили в чашки Петри, содержащий почвенный агар, и равномерно распределили по поверхности шпателем Дригальско. Термостатировали чашки при 28–30°С в течение 72 часов. При учете результатов количество колоний перемножали на степень разведения, а результат выражали в числе колониеобразующих единиц (КОЕ в 1 г почвы) [5].

Результаты и обсуждение: Показатели ОМЧ исследованных почв варьировало от $2,7 \times 10^4$ до $1,01 \times 10^5$ КОЕ/г почвы (Таблица).

	1	
Место взятия проб	№ пробы	Количество колоний в 1 г почвы, КОЕ/г почвы
Житковичский район	1	4.2 *104
	2	3,8*10 ⁴
	3	$4*10^4$
	4	4,4*10 ⁴
Столинский	5	$2,7*10^4$
район	6	2,9*10 ⁴
Пинский район	7	1 01*10 ⁵

Таблица – Результаты определения ОМЧ

В большинстве образцов (1–6) значения ОМЧ оказались ниже нормы (норма для почв: 10^5 – 10^7 КОЕ/г [1]), что может быть связано с низким содержанием органического вещества[6], неблагоприятными физико-химическими свойствами почвы, такими как повышенная кислотность или засоление [7], воздействием пестицидов на почвенную микрофлору [6].

Только в образце 7 показатель ОМЧ соответствовал нормативным значениям, что указывает на более благоприятное биологическое состояние почвы.

Низкая микробиологическая активность почвы отражается на экологическом состоянии агроценоза, что приводит к ухудшению минерализации органического вещества и доступности элементов питания, снижению устойчивости почвы к эрозии из-за слабой структуры [2], возрастанию необходимости внесения удобрений и пестицидов, что дополнительно ухудшает экологическую ситуацию.

Список использованных источников

- 1. Гавриленко Е.Г., Ананьева Н.Д., Макаров О.А. Оценка качества почв разных экосистем. Почвоведение. 2013. №12. C. 1505–1515.
 - 2. Звягинцев Д.Г. (ред.). Методы почвенной микробиологии и биохимии. М.: МГУ, 1991. 309 с.
- 3. ГОСТ 17.4.3.01-83 Охрана природы. Почвы. Общие требования к отбору проб. М.: Изд-во стандартов, 1984.
- 4. ГОСТ 17.4.4.02-84 Охрана природы. Почвы. Методы отбора и подготовки проб для анализа. М.: Издво стандартов, 1986.
 - 5. Беляев Е.Н. Методы микробиологического контроля почвы. М., 2004. 12 с.
- 6. Изтлеулов Г.М. и др. Исследование влияния пестицидов на микроорганизмы почвы. Новости науки Казахстана. 2020. №4. С. 186–194.
- 7. Козлов А.В. Влияние диатомита на численность микробного сообщества почвы. Агрохимический вестник. 2012. №5. С. 5.