РАЗРАБОТКА РЕЦЕПТУР И ОЦЕНКА КАЧЕСТВА КВАСА В ЛАБОРАТОРНЫХ УСЛОВИЯХ НА БАЗЕ ОАО «ЖАБИНКОВСКИЙ КОМБИКОРМОВЫЙ ЗАВОД»

Е.А. Ничипорук, 5 курс Научный руководитель – **М.М. Воробьёва**, к.б.н., доцент **Полесский государственный университет**

Квас – безалкогольный напиток с объемной долей этилового спирта не более 1,2%, изготовленный в результате незавершенного спиртового или спиртового и молочнокислого брожения сусла [1].

Квас представляет собой напиток, содержащий разнообразные химические соединения, состав которых определяется используемыми ингредиентами. Основу кваса составляет цельное зерно, в котором естественным образом присутствуют белки, полисахариды, минеральные элементы и витамины. В процессе ферментации, осуществляемой с помощью молочнокислых бактерий и дрожжей, квас дополнительно обогащается витаминами, молочной кислотой и диоксидом углерода [2, с.8].

Чтобы получить фруктовые, ягодные и овощные квасы, закваску делают из различных фруктов, ягод и овощей, свежих либо сушеных квашенных. Они или смешиваются с квасными хлебцами, или сами служат в качестве квасного сусла. После добавления дрожжей квас бродит несколько дней, это зависит от рецептуры, затем процеживается, при необходимости разбавляется водой с сахаром, после настаивается еще пару суток. Все сырье, которое применяется для производства квасов, должно обеспечивать безопасность квасов и, конечно же, их качество [3, с.14].

Целью нашего исследования являлось разработать рецептуру кваса и оценить органолептические, физико-химические и микробиологические показатели качества готовых напитков.

Таблица 1. – Рецептура исследуемых образцов кваса, расчет на 1 л.

Наименование кваса	Ингредиенты на 1 литр	Способ приготовления 1 литра кваса	
Квас из яблок (объект № 1)	Вода питьевая — 1л Сахар — 60 г Яблоки — 260 г Дрожжи сухие — 1 г	Способ приготовления одного литра кваса следующий, 260 г яблок варить 7 минут в одном литре питьевой воды, с 60 г сахара. После остывания, компот следует остудить до 40 °С и добавить 1 г сухих дрожжей. Выдержать квас при температуре от 25 °С до 30 °С в течении от 18 до 20 часов. Готовый квас охладить, перелить в другую емкость и хранить в прохладном месте.	
Квас из вишни (объект № 2)	Вода питьевая — 1л Вишня — 250 г Сахар — 50 г Дрожжи сухие — 5 г	Для приготовления одного литра кваса из вишни необходимо использовать 250 г вишни, 50 г сахара, 5 г сухих дрожжей. Вишню варить в 1 л воды с добавлением кваса, после закипания проварить компот 5 минут и оставить остывать до 40 °C. В компот добавить дрожжи. Выдержать при температуре от 25 до 30 °C в течении 20 часов. Готовый квас еще раз процедить, разлить по бутылкам и хранить в прохладном месте.	
Квас из клюквы (объект № 3)	Вода питьевая — 1л Клюква — 250 г Сахар — 100 г Дрожжи сухие — 15	использовать 1 л воды, 250 г клюквы, 15 г сухих дрожжей, 100 г сахара. Клюкву и сахар залить волой и довести до кипения Охладить	

Исследования проводили в 2025 году на базе лаборатории ОАО «Жабинковский комбикормовый завод». Объектами исследования служили: объект № 1 – квас из яблок, объект № 2 – квас из вишни, объект № 3 – квас из клюквы, объект № 4 – квас «Хатні» темный является контрольным образцом.

Органолептические показатели напитков проверялись на соответствие ГОСТ 6687.5-86 [4], микробиологические – ГОСТ 30712-2001 [5], физико-химические показатели такие как атомно-абсорбционный метод определения токсичных элементов ГОСТ 30178–96 [6], кислотность ГОСТ 6687.4-86 [7].

Рецептура исследуемых объектов кваса указана в таблице 1.

Объект № 4 квас «Хатні» темный имеет следующий состав: вода из артезианских скважин, сахар белый, концентрат квасного сусла, дрожжи хлебопекарные, пищевой краситель: карамельный колер, двуокись углерода.

Органолептическую оценку осуществляли с помощью балльной системы оценки качества. Данные оценки представлен в таблице 2.

Таблица 2. – Органолептическая оценка кваса по 25-балльной шкале, балл

Объект	Внешний вид, цвет (от 1 до 7)	Вкус и аромат (от 6 до 12)	Насыщенность CO ₂ (от 2 до 6)	Итого
Объект № 1	5	7	5	17
Объект № 2	7	10	5	22
Объект № 3	7	11	5	23
Объект № 4	6	10	6	22

Органолептическая оценка напитков показала, что наибольшее количество баллов получил объект № 3 (23 балла), объект № 4 и № 2 набрал приближенное к нему значения (22 балла), образец № 1 набрал 17 баллов.

Для полноты исследования был осуществлен микробиологический анализ для определения БГКП. При выявлении результатов в образце № 1, № 2, № 3, № 4 не было выявлено помутнения и

газообразования в среде Кесслера, что дает отрицательный ответ на наличие БГКП. Таким образом исследуемые образцы безопасны и соответствуют ГОСТ 30712-2001 [5].

Метод определения кислотности основан на титрование кваса после полного освобождения напитка от CO_2 . Кислотность в квасе должна варьироваться от 1,5 до 7. Показание кислотности в квас из яблок составило 2,5; квас из вишни – 2,8; квас из клюквы – 2,2; квас «Хатні» темный – 3,3. Данные показатели соответствуют ГОСТу 6687.4-86 [7].

Атомно-абсорбционный метод определения токсичных элементов основан на минерализации продукта. Содержание свинца не должно превышать 0,3 мг/кг, содержание кадмия 0,03 мг/кг. Результаты исследования приведены в таблице 3.

Таблица 3. – Результаты анализа содержания токсичных элементо	В

Наименование и номер образцов	Содержание свинца, мг/кг,	Содержание кадмия, мг/кг	
Объект № 1 квас из яблок	0,11	0,01	
Объект № 2 квас из вишни	0,12	0,00	
Объект № 3 квас из клюквы	0,19	0,02	
Объект квас «Хатні» темный	0,20	0,02	

Данные показатели соответствуют ГОСТу 30178–96 [6].

Подводя итоги, можно заключить, что квас из яблок, квас из вишни, квас из клюквы, квас «Хатні» темный, по совокупным показателям, не демонстрировал нарушений требований государственных стандартов, что свидетельствует о безопасности данного продукта.

Список использованных источников

- 1. Квасы. Общие технические условия: ГОСТ 31494-2012; введ. РБ 01.02.15. Минск: Белорус. гос. ин-т стандартизации и сертификации, 2015. 14 с.
 - 2. Королев, Д. А. Русский квас / Д. А. Королев. М. НОРМА, 2013. 112 с.
- 3. Скурихина, И. М. Химический состав российских пищевых продуктов: учеб. пособие / М. И. Скурихина, В. А. Тутельяна. Москва: Изд-во ДеЛи, 2014. 235 с.
- 4. Продукция безалкогольной промышленности. Методы определения органолептических показателей и объема продукции: ГОСТ 6687.5-86; введ. РБ 01.07.1987. Минск: Белорус. гос. ин-т стандартизации и сертификации, 1987. 18 с.
- 5. Напитки безалкогольные, квасы и сиропы. Методы микробиологического анализа: ГОСТ 30712-2001; введ. РБ 01.01.2003. Минск: Белорус. гос. ин-т стандартизации и сертификации, 2003. 18 с.
- 6. Сырье и продукты пищевые. Атомно-абсорбционный метод определения токсичных элементов: ГОСТ 30178–96; введ. РБ 01.07.1998. Минск: Белорус. гос. ин-т стандартизации и сертификации, 1998. 12 с.
- 7. Напитки безалкогольные, квасы и сиропы. Метод определения кислотности: ГОСТ 6687.4-86. Взамен ГОСТ 6687.4-75; введ. РБ 01.01.2003. Минск: Белорус. гос. ин-т стандартизации и сертификации, 2087. 8 с.