ВЫХОД РОССИЙСКИХ НАНОТЕХНОЛОГИЙ НА МИРОВОЙ РЫНОК: ОПЫТ УСПЕХА И СОТРУДНИЧЕСТВА, ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ

Сборник материалов

3-й ежегодной научно-практической конференции Нанотехнологического общества России

5—7 октября 2011 года, Санкт-Петербург

Санкт-Петербург Издательство Политехнического университета 2011

Выход российских нанотехнологий на мировой рынок: опыт успеха и сотрудничества, проблемы и перспективы : Сборник материалов . — СПб. : Изд-во Политехн. ун-та, 2011.-156 с.

Сборник содержит материалы докладов участников третьей ежегодной научно-практической конференции Нанотехнологического общества России «Выход российских нанотехнологий на мировой рынок: опыт успеха и сотрудничества, проблемы и перспективы». Конференция проводится на базе Санкт-Петербургского академического университета — научно-образовательного центра нанотехнологий РАН при поддержке Инженерного клуба Санкт-Петербурга, Консорциума «КОДЕКС» (информационная сеть «Техэксперт»), СПбГПУ, РОСНАНО, РСПП, СНИО, ТПП, ЗАО «Научно-технический центр прикладных нанотехнологий».

Цель и задачи конференции. Обсудить и обозначить основные пути кооперации и самоорганизации отечественных правообладателей интеллектуальных прав на нанотехнологии и производителей нанопродукции для обеспечения ее конкурентоспособности и безопасности, формирования ее спроса и потребления. Выработать дополнительные рекомендации для создания благоприятной среды, развивающей технологический бизнес в $P\Phi$, и для реализации перехода страны к инновационной экономике. Продемонстрировать успехи в этой сфере на примерах отечественного научного и инженерного сообщества, в том числе из Санкт-Петербурга, а также ряда зарубежных компаний.

СОДЕРЖАНИЕ

Асхадуллин Р. Ш., Мартынов П. Н., Юдинцев П. А.,
Симаков А. А., Чабань А. Ю., Осипов А. А.
Жидкометаллическая технология синтеза наноструктурированных
веществ в вопросах повышения функциональных и эксплуатационных
характеристик ядерных энергетических установок 9
Белокрылова Е. А.
Актуальные проблемы правового регулирования отношений
в области экологической безопасности нанотехнологий
и наноматериалов в Российской Федерации: использование опыта
зарубежных стран
Бикбов М. М.
Опыт коммерциализации интеллектуальной собственности
в Уфимском НИИ глазных болезней
Борисенко Н. И., Борисенко О. Н., Савелло А. А., Чичиро Е. А.
Избыточная поверхностная энергия наночиастиц вызывает
измельчение зерна твердых сплавов
Борисенко Н. И., Петросян Г. Р.
Тэны большой мощности для исследования ядерных реакторов 24
Борисенко Н. И., Лисин П. А.
Определение концентрации наночастиц
при создании твердых сплавов
Борисенко Н. И., Гизатуллин Р. М.
Самоорганизация и самосборка в композицинных
материалах «живое—неживое»
Бородин М. Н., Патрикеев Л. Н.
Нанопросвещение и наноборазование как важнейший
фактор рынка нанотехнологий
Волков В. А., Омельянчук С. А., Шукина Е. Л.
отков в. А., омельянчук С. А., щукина Е. Л. Формирование слоя наночастиц магнитных жидкостей
формирование слоя наночастиц магнитных жидкостей на поверхности полимерных волокон и защитные свойства тканей32
na nobepanoeth nommephibia bohokon n samninibie ebonetba tkanen32

Волков В. А., Амарули А., Агеев А.А.
Нанотехнология формирования модифицирующих слоев
на волокнах для маслоотталкивающей отделки тканей
Вохидов А. С.
Успешный опыт работы организаций и компаний
на рынке услуг в сфере наноиндустрии.
OOO «АВТОСТАНКОПРОМ»
Ганжигаева А. Н., Рахметова А. А., Богословская О. А.,
Мбаша М. Д., Ильина А. В., Ольховская И. П.,
Овсянникова М. Н., Варламов В. П., Глущенко Н. Н.
Разработка и создание нового класса ранозаживляющих
лекарственных средств на основе современных нанотехнологий 38
Глазко В. И.
Методы и перспективы геномной селекции
Гордеев Ю. А.
Риски и возможности нанотехнологий в сельском хозяйстве
Гордеев Ю. А.
Биологически активные компоненты ионизированного потока
излучений низкотемпературной гелиевой плазмы
Грачев Д. Д., Севастьянов Л. А.
Спонтанное нарушение симметрии в графене
и квантовая генерация спиновых волн
Григоров В.В., Мартынов П.Н., Асхадуллин Р.Ш.,
Ягодкин И.В., Григорьев Г.В., Низавцев А.А., Ващенко Л.Б.
Плазмохимическая технология получения
наноструктурных мембран
Гришин А. Г., Ягодкин И. В.,
Мартынов П. Н., Посаженников А. М.
Применение метода электрофизического воздействия на дисперсную
среду в устройствах фильтрации газовых сред от аэрозолей
различного происхождения
Громаковский Д. Г., Макарьянц М. В.,
Карпухин М. В., Шигин С. В.
Особенности молекулярного армирования поверхностей
трения агрегатов космической техники
Давыдов С. В., Леонов В. С.
Высокоскоростная динамическая имплантация поверхности
углеродистой стали речным песком

Давыдов С.В.
Технология наномодифицирования железо-углеродистых сплавов59
Деулин Е. А.
Трибология как «Клондайк» мирового нанотехнологического рынка
Евдокимов Ю. М., Лопатников М. В.
Подходы ипринципы формирования качества границ раздела
(адгезии) в микро- и наносистемах
Ефимов О. Ю., Юрьев А. Б., Громов В. Е., Костерев В. Б., Коновалов С. В.
Формирование наноструктурно-фазовых состояний в технологии термомеханического упрочения фасонного проката
Иванов А.А.
Перспективы Федерального центра в области нанобиотехнологий68
Иванов А.В., Соловьева А.Б., Хлебцов Н.Г.
Новые лекарственные формы для люминесцентной диагностики и фотодинамической терапии на основе наноразмерных композитов
порфириновых фотосенсибилизаторов с амфифильными
полимерами и наночастицами
Ичкитидзе Л. П., Подгаецкий В. М., Селищев С. В.
Электропроводность композиционного
наноматериала с углеродными нанотрубками
Ичкитидзе Л. П., Миронюк А. Н.
Гибридный датчик магнитного поля
для регистрации углеродных нанотрубок
Козлов В. С., Грушко Ю. С., Колесник С. Г., Кукоренко В. В., Лебедев В. Т., Седов В. П., Шилин В. А.
Эндометаллофуллерены гадолиния как основа эффективных
контрастирующих систем для ЯМР-томографии
Колобов Ю. Р., Иванов М. Б.
Разработка технологий получения наноструктурированных
титановых сплавов с биоактивными покрытиями для медицинских
имплатов. Опыт организации опытно-промышленного
производства на базе малого инновационного предприятия при вузе .76
Коноплев Б. Г., Агеев О. А.
Комплексный подход к исследованиям и разработкам в области наноматериалов и наносистем в научно-образовательном центре
«Нанотехнологии» Южного Федерального университета
* • • • • • • • • • • • • • • • • • • •

Кортов В. С., Анисимова Е. В.
Опыт создания и основные результаты региональной программы
по развитию нанотехнологий
Лабунов В. А.
От микро- к наноэлектронике
Латышев М. А.
Некоторые аспекты проблем продвижения высоких технологий
в промышленности. Роль стандартизации и метрологии84
Макин В. С., Макин Р. С.
Разрушение диэлектриков и фемтосекундная лазерная
наномаркировка изделий
Массалимов И. А., Хусаинов А. Н., Мустафин А. Г.,
Чуйкин А. Е., Янахметов М. Р.
Долговременная защита строительных материалов
наноразмерными минеральными покрытиями на основе серы
Низина Т. А., Пономарев А. Н., Кочетков С.Н., Козеев А.А.
Эффективные цементные композиты, модифицированные
водорастворимыми аддуктами нанокластеров углерода
Петрунин В. Ф.
Разработка наноматериалов и нанотехнолоний в атомной отрасли91
Полищук С. Д.
Работа наноцентра для АПК
Пономарев А. Н., Моспан Е. А., Иванов К. Н.
Технология «Эпоксипан» в процессах усиления
конструкций углеродными сетками и лентами
Потапов А. А.
О революционном прорыве в области создания автоматических
программно-управляемых технологий и производств атомной
точности (ТАТ и ПАТ)
Пророкова Н. П., Вавилова С. Ю., Бузник В. М.
Волокнистые материалы на основе полипропилена,
модифицированного нано- и ультрадисперсным
политетрафторэтиленом
Раков Э. Г.
Современное состояние производства и применения углеродных нанотрубок
Рамкин Л. С.
Инжиниринг программных комплексов по производству наноматериалов, применяемых при производстве продукции
гражданского назначения
r., ,,,,

Раткин Л. С.	
Конструирование репозиторных систем по исследованию	
нанотехнологической продукции с методами оптимизации ответа	
на запрос и оперативным доступом в распределенной сети	
промышленных вычислительных кластеров	106
Раткин Л.С.	
Жизненный цикл наноиндустриальной продукции: системы	
мониторинга и современные методики подготовки специалистов	107
Рац А. А.	
Формирование нанотехнологического кластера в Дубне	108
Рождествина В. И., Сорокин А. П.,	
Кузминых В. М., Киселева А. А.	
Геотехнология единого производственного цикла рационального	
использования энергетического сырья и обеспечения	
экологической безопасности	111
Светцов В. И.	
Предложения по образовательной деятельности НОР	114
Симаненкова Л. М., Соколов В. В.,	
Кильдеева Н. Р., Филатов Ю. Н.	
Получение нановолокнистых сорбентов на основе	
биосовместимых аминосодержащих полимеров	117
Сонина А. Н., Леснякова Л. В., Моргунов Г. К., Вихорева Г. А.	
Нановолокнисные материалы на основе хитозана:	
	119
Титова И. И., Титов А. О., Титов О. П., Колобов П. В.	
Новая технология определения поверхностных	
свойств веществ и материалов	121
Третьяков Ю. Д., Путляев В. И.	
Факультет наук о материалах МГУ: инновационная образовательная	
деятельность сквозь призму научно-исследовательской	
работы студентов в области наноматериалов	125
Урманов Д. М.	
Перспективы применения малогабаритных инерциональных	
систем на основе микроэлектромеханических сенсоров	
(МЭМС) в России	126
Фастов И. С.	0
Опыт создания малой инновационной высокотехнологичной	
компании в области нанотехнологий	127

Фастов С. А.	
Разработка алюмосиликатных наноконтейнеров	
и их применение в различных областях промышленности128	
Хавкин А. Я.	
Нефтегазовые нанотехнологии — основа повышения	
энергоэффективности нефтегазовой отрасли и вклад в переход	
экономики России к VI технологическому укладу	
Хорьков К. С., Герке М. Н., Абрамов Д. В.,	
Прокошев В. Г., Аракелян С. М.	
Формирование наноструктурированных тонкопленочных	
покрытий титана под воздействием фемтосекундного	
лазерного излучения в вакууме	
Юрженко М. В., Литвиненко Ю. В.	
Селективные комбинационные и композиционные наноматериалы	
для технологических систем охраны окружающей среды 137	
Ягудаев Ю. В., Котов А. Е., Копейкин Ю. А.	
Текущее состояние и проблемы развития нанотехнологий	
на территории Ставропольского края — региона инновационных	
и инвестиционных возможностей России	
Shah M. A., Al-Ghamdhi M. S.	
Aluminum Oxide Nanostructures prepared	
in Water and Their Potential Applications	
POCHAHO149	
ТЕХЭКСПЕРТ	
Научно-технический центр приколадных нанотехнологий 153	

БИОЛОГИЧЕСКИ АКТИВНЫЕ КОМПОНЕНТЫ ИОНИЗИРОВАННОГО ПОТОКА ИЗЛУЧЕНИЙ НИЗКОТЕМПЕРАТУРНОЙ ГЕЛИЕВОЙ ПЛАЗМЫ

Гордеев Ю. А.РГУТиС

Активными компонентами низкотемпературной плазмы, способными инициировать различные реакции, являются свободные электроны, свободные атомы и радикалы (СА и СР, спиновая релаксация радикалов является одним из основных процессов, определяющих вероятность рекомбинации), возбужденные частицы, $\mathcal{Y}\Phi$ -излучение (преимущественно В-УФ), слабые электромагнитные поля и др.

В наших экспериментах при применении гелия в качестве рабочего газа плазматрона максимум сплошной составляющей находится примерно на участке длин волн 680—700 нм, что, согласно закону смещения, для теплового излучения соответствует температуре 4140-4262 К, а наиболее яркие линии излучения гелия — на длинах волн 294,5, 318,7, 388,9, 402,6, 447,1, 471,3, 492,2, 501,6, 587,6, 655,5, 667,8, 706,5 нм. Типичный спектр излучения изучаемых опытных плазмотронов сельскохозяйственного назначения СУПР-М и СУПР-К смешанный.

Очевидно, что в длинноволновой области спектра испускается, в основном, тепловое излучение, а в коротковолновой — излучение люминесценции атомов гелия и различных примесей.

Опытный плазмотрон сельхозначения СУПР-М отличается от предыдущего промышленного более мощным источником питания, значительно большей площадью облучения, высокой стабильно-

стью работы, а также спектром излучения — особенно в областях 460-400 нм он близок к спектру весеннего солнца.

Оптические спектральные свойства семян растений изучались на базе: лаборатории биофизики СГСХА, кафедры «Оптико-электронные системы» Смоленского филиала МЭИ, ООО «Люмэкс» (Санкт-Петербург).

Нами проводились исследования спектральных характеристик гелиевой плазмы плазмотронов различной конструкции.

Спектральные характеристики плазмотронов определялись с помощью спектрометра, собранного на базе спектрофотометра СФ-4А, в котором установлен фотоумножитель ФЭУ-18. Источником высокого напряжения для фотоумножителя был высоковольтный выпрямитель с напряжением на выходе 600—3800 В.

Примененный режим работы обеспечивал регистрацию сигнала с точностью до 3%. Спектральная чувствительность установки имеет линейный характер в области 450—530 нм. По спектрам плазмотронов исследовался состав потока ионов и атомов в плазме.

Первый опыт был проведен в лаборатории биофизики Смоленской ГСХА. Плазмотроны работали в течение 1 часа 30 мин при силе тока, ионизирующего газ, 70 А, напряжении 24—28 вольт. Облучение проводилось в течение 40 сек. (постоянно), семена находились на расстоянии 80 см от сопла плазмотрона. Семена озимой ржи облучали в начале и конце работы плазмотрона, в центре и по краям плазменного пятна.

В эксперименте исследовались спектральные характеристики плазмотронов конструкции инженера А.С. Береснева (ПБ-1 — лабораторный (контроль), ПБ-2 — промышленный) и новые промышленные плазмотроны инженера А. А. Кулькова (ПК-3, ПК-4, ПК-5).

Исследование спектральных характеристик плазмотронов производственного назначения показало, что их максимум излучения лежит в области 510-520 нм, что соответствует T = 5200-5300 °K.

Изменение расстояния от плазмотрона до приемного устройства спектрометра не изменяют вида спектра. Регистрация спектра центральной части пятна и боковой части пятна излучения промышленного плазмотрона ПБ-2 показала, что происходят изменения в УФ-области спектра и ИК-области. Эти изменения оказывают существенное влияние на параметры прорастающих семян (табл. 1).

Таблица 1

Влияние продолжительности работы плазмотрона и места отбора образца на длину проростков, суммарную длину корней и всхожесть семян озимой ржи

۴				Длина		Cym	Суммарная длина	лина	Bc	Всхожесть,	
bapi	Бариант		про	проростков, см	, см	K	корней, см	M		%	
IIIO	olibiTa		1	2	cb.	1	2	cp.	1	2	cb.
	CHILDI	начало	6,44	8,25	7,35	32,89	25,13	29,01	06	09	75
TI TO STORY OF THE O	центр	конец	8,23	6,56	7,40	50,94	40,67	45,81	80	90	85
1 Diasmotpon 11D-2	200	начало	7,75	6,65	7,20	43,34	40,14	41,74	80	09	70
	краи	конец	7,53	8,14	7,51	43,03	36,43	39,73	80	70	75
	9000000	начало	6,63	8,45	9,04	44,30	51,85	48,08	80	09	70
C 7111 xx0 mass x x x x 1	пентр	конец	9,39	10,77	10,08	54,70	57,53	56,12	80	09	70
11JIa3MO1poH 11IN-5	200	начало	6,79	8,45	9,12	54,47	55,88	55,18	70	09	65
	краи	конец	7,55	9,36	8,46	40,13	63,53	51,83	80	70	75
	Childre	начало	6,00	8,00	8,50	45,63	38,30	41,97	80	90	65
И ДП можето поль	пентр	конец	7,55	8,50	8,03	50,67	39,00	44,84	100	70	85
LDIASMOTPOH LIN-4	2	начало	6,49	5,50	6,00	43,63	32,94	38,29	06	80	85
	краи	конец	9,50	9,13	9,32	53,97	41,35	47,66	90	80	85
	CHICH	начало	7,65	7,41	2,53	45,36	43,89	44,63	80	70	75
2 /III 110 mmor 100 m I	центр	конец	9,42	8,69	9,06	49,02	52,75	50,89	09	80	70
LDIASMOIDOH LIN-5	2000	начало	9,39	9,70	9,55	57,67	53,38	55,53	96	90	90
	краи	конец	7,96	7,18	7,57	45,23	43,15	44,19	80	09	70
Контроль — ПБ-1 (лабораторный)	(лаборатор	оный)	8,00	7,40	7,70	41,43	37,7	39,57	80	50	65

Как видно из приведенных данных, лучшими оказались плазмотроны Π K-3 и Π K-5. Они превысили контрольный плазмотрон Π Б-1 на 33 и 23% соответственно.

ВЫХОД РОССИЙСКИХ НАНОТЕХНОЛОГИЙ НА МИРОВОЙ РЫНОК: ОПЫТ УСПЕХА И СОТРУДНИЧЕСТВА, ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ

Сборник материалов

3-й ежегодной научно-практической конференции Нанотехнологического общества России

5-7 октября 2011 года, Санкт-Петербург

Компьютерная верстка Н. В. Стасеевой

Налоговая льгота — Общероссийский классификатор продукции ОК 005-93, т. 2; 95 3004 — научная и производственная литература

Подписано в печать 29.09.2011. Формат 60×84/16. Печать цифровая. Усл. печ. л. 9,75. Тираж 200. Заказ 8102b.

Санкт-Петербургский государственный политехнический университет. Издательство Политехнического университета, член Издательско-полиграфической ассоциации университетов России. Адрес университета и издательства: 195251, Санкт-Петербург, Политехническая ул., 29. Тел.: (812) 550-40-14.

www.gpupress.ru