МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ И ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ: ТЕОРИЯ И ПРАКТИКА

УДК 004.89

РАЗРАБОТКА СИСТЕМЫ РАСПОЗНАВАНИЯ ОБРАЗОВ НА РУТНОN: АЛГОРИТМИЧЕСКИЙ ПОДХОД К АНАЛИЗУ БИНАРНЫХ ПРИЗНАКОВ

Бархатов Константин Сергеевич, студент Арванова Саният Мухамедовна, старший преподаватель Хатаев Абдурашид Мусаевич, студент ФГБОУ ВО «КБГУ», г. Нальчик

DEVELOPMENT OF A PATTERN RECOGNITION SYSTEM IN PYTHON: AN ALGORITHMIC APPROACH TO BINARY FEATURE ANALYSIS

Barkhatov Konstantin Sergeevich, student, barhatov364@gmail.com Arvanova Saniyat Mukhamedovna, Senior Lecturer, sani_07@mail.ru Khatayev Abdurashid Musaevich, student, rasihatataev@mail.ru Kabardino-Balkarian State University, Nalchik

Разработана система распознавания образов по бинарным признакам для оценки конфигураций. Используется многокритериальный анализ на основе семи метрик сходства. Решение ориентировано на задачи информационной безопасности

Ключевые слова: бинарные признаки, распознавание образов, метрики сходства, классификация, анализ данных, кибербезопасность.

A pattern recognition system based on binary features has been developed to evaluate system configurations. The approach applies multi-criteria analysis using seven similarity metrics. The solution is designed for applications in information security.

Keywords: binary features, pattern recognition, similarity metrics, classification, data analysis, cybersecurity.

В условиях цифровой трансформации и роста киберугроз важно разрабатывать методы анализа, учитывающие качественные признаки. Традиционные количественные подходы (размер файлов, частота запросов) не охватывают дискретные атрибуты, такие как функциональность ПО или поведенческие паттерны пользователей [1, с.112]. Для эффективного распознавания образов требуется унифицированный анализ разнородных данных с возможностью динамической классификации объектов при изменении их состояний.

Ключевая концепция базируется на пороговом принципе - объект изменяет состояние при достижении критического значения. Например, ОС становится «небезопасной» при нарушении конкретных условий (открытый исходный код \rightarrow закрытый, многопользовательский режим \rightarrow отключённый).

Методологическая основа — бинарное кодирование признаков. Любой объект Xk представляется вектором Xk=(xk1,xk2,...,xkn), где xkj=1 — наличие j-го признака, а xkj=0 — его отсутствие.

Новизна исследования заключается в разработке адаптивной системы на Python для автоматизации преобразования объектов в бинарные векторы и реализации 7 алгоритмов сравнения для многокритериального анализа.

Разработанная программа представляет собой десктоп-приложение с графическим интерфейсом, реализованное на Python с использованием библиотеки Tkinter для визуального интерфейса. Система состоит из трёх ключевых модулей:

- 1. Модуль исходных данных таблица бинарных признаков объектов.
- 2. Модуль попарного сравнения расчёт 7 метрик сходства.
- 3. Аналитический модуль агрегация результатов по методам.

На вкладке «Исходные данные» (Рис. 1) представлена матрица бинарных признаков для четырёх операционных систем. Каждая ОС описывается вектором Хk из 5 компонент, соответствующих критериям: многозадачность, многопользовательский режим, графический интерфейс, открытый исходный код, виртуализация. Это преобразование позволяет применять математический аппарат (метрики расстояний, алгоритмы кластеризации) к качественным данным.

Например, вектор для FreeBSD — [1,1,0,1,1], где отсутствие графического интерфейса (xk3=0) отражает его минималистичный дизайн. Векторы других ОС формируются аналогично, позволяя их сравнивать.

Исходные д	анные Сравне	ние ОС Итс	оговые показате	ели	
ос	Многозадачн	Многопольз	Графически	Открытый исх	Виртуализация
Windows	1	1	1	0	1
Linux	1	1	1	1	1
macOS	1	1	1	0	1
FreeBSD	1	1	0	1	1

Рисунок 1. - Вкладка «Исходные данные»

На вкладке «Сравнение ОС» (Рис. 2) представлены результаты анализа схожести операционных систем по нескольким метрикам.

Исходные ,	данные	Сравнение С	С Ито	говые показа	тели		
OC1 vs O	Рассел-Р	Жокар-Ні	Дайс	Сокаль-С	Сокаль-N	Кульжинс	Юл
Windows vs	0.8000	0.8000	0.8889	0.6667	0.8000	0.4444	0.0000
Windows vs	0.8000	1.0000	1.0000	1.0000	1.0000	0.5000	1.0000
Windows vs	0.6000	0.6000	0.7500	0.4286	0.6000	0.3750	-1.0000
Linux vs ma	0.8000	0.8000	0.8889	0.6667	0.8000	0.4444	0.0000
Linux vs Fre	0.8000	0.8000	0.8889	0.6667	0.8000	0.4444	0.0000
macOS vs F	0.6000	0.6000	0.7500	0.4286	0.6000	0.3750	-1.0000

Рисунок 2. – Вкладка «Сравнение ОС»

В первой колонке указаны сравниваемые пары (Windows, Linux, macOS), а в остальных — коэффициенты схожести: Рассела-Рао, Жаккара-Ниджхёйса, Дайса, Сокаля-Снедека, Сокаля-Мишеля, Кульжинского и Юла. Значения от -1 до 1 отражают степень сходства, где более высокие указывают на большую схожесть, а отрицательные или нулевые — на значительные различия.

Итоговая вкладка (Рис. 3) содержит средние значения методов сравнения ОС. Метод Дайса имеет наивысший показатель (0.8611), отражая значительное сходство данных. Жаккара-Ниджхёйса и Сокаля-Мишнера дают одинаковый результат (0.7667), а наименьшее значение у Кульжинского (0.4306), что указывает на наибольшее различие ОС по этому методу.

Метод сравнения объектов реализуется через 7 функций, каждая из которых оперирует бинарными векторами, рассмотрим более детально.

Метрика Рассела-Рао оценивает долю совпадающих единиц в векторах. Этот метод подходит для оценки сходства, когда важна только доля совпадающих положительных признаков [2, с.9-10]. Обычно обозначают: а — число совпадений 1-1; n — общее число признаков (таблица).

Метрика Жаккара-Нидмена измеряет отношение числа совпадений 1-1 к количеству признаков, где хотя бы один из объектов имеет значение 1. Эта метрика подходит, когда важно учитывать только признаки, имеющие хотя бы одно положительное значения [3, c.125]. Обычно обозначают b – количество случаев, когда xi=1 и yi=0Z; c – количество случаев, когда xi=0 и yi=1 (таблица).

Метрика Дайса удваивает вес совпадающих единиц по сравнению с Жаккаром. Этот метод предпочтителен, когда критично учитывать совпадения 1-1 сильнее, чем различия (таблица).

Исходные данные	Сравнение ОС	Итоговые показатели
Метод	д сравнения	Средний показатель
Рассел-Рао		0.7333
Жокар-Нидмен		0.7667
Дайс		0.8611
Сокаль-Сниф		0.6429
Сокаль-Мишнер		0.7667
Кульжинский		0.4306
Юл		-0.1667

Рисунок 3. – Вкладка «Итоговые показатели»

Метрика Сокала-Снифа учитывает не только совпадения 1-1, но и различия. Она полезна для более сбалансированной оценки, учитывающей вклад различий. Метрика Сокала-Снифа представлена соотношением (таблица)

Программная реализация методов представлена таблицей.

Таблица – Программная реализация метрик

Название	Листинг программы	Формула	
	def russell rao(x, y):		
Метрика	n = len(x)	$c_{m} = a$	
Рассела-Рао	a = sum(1 for i in range(n) if x[i] == y[i] == 1)	$Srr = \frac{a}{n} (1)$	
	return a / n		
	def jaccard_nidman(x, y):		
Mamayyya	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	а	
Метрика	b = sum(1 for i in range(len(x)) if x[i] == 1 and y[i] == 0)	$Sj = \frac{a}{a+b+c} $ (2)	
Жаккара-Нидмена	c = sum(1 for i in range(len(x)) if x[i] == 0 and y[i] == 1)	a+b+c	
	return $a / (a + b + c)$ if $(a + b + c) != 0$ else 0		
	def dice(x, y):		
	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	2a	
Метрика Дайса	b = sum(1 for i in range(len(x)) if x[i] == 1 and y[i] == 0)	$Sd = \frac{2a}{2a+b+c} $ (3)	
	c = sum(1 for i in range(len(x)) if x[i] == 0 and y[i] == 1)		
	return $(2 * a) / (2 * a + b + c)$ if $(2 * a + b + c) != 0$ else 0		
	def sokal_sneath(x, y):		
Метрика	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	Sss	
Сокала-Снифа	b = sum(1 for i in range(len(x)) if x[i] == 1 and y[i] == 0)	$= \frac{a}{a+2(b+c)}(4)$	
Сокала Спифа	c = sum(1 for i in range(len(x)) if x[i] == 0 and y[i] == 1)	a+2(b+c)	
	return $a / (a + 2 * (b + c))$ if $(a + 2 * (b + c)) != 0$ else 0		
	def sokal_michener(x, y):	Ssm	
Метрика	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	= = :	
Сокала-Мишнера	d = sum(1 for i in range(len(x)) if x[i] == y[i] == 0)	$= \frac{a+d}{a+b+c+d} $ (5)	
	return $(a + d) / len(x)$	итртсти	
	def kulczynski(x, y):		
Метрика	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	a a	
Кульжинского	b = sum(1 for i in range(len(x)) if x[i] == 1 and y[i] == 0)	$Sk = \frac{a}{b+c} $ (6)	
	c = sum(1 for i in range(len(x)) if x[i] == 0 and y[i] == 1)		
	return $a / (b + c)$ if $(b + c) != 0$ else 0		
	def yule(x, y):		
	a = sum(1 for i in range(len(x)) if x[i] == y[i] == 1)	ad ba	
Метрика Юла	b = sum(1 for i in range(len(x)) if x[i] == 1 and y[i] == 0)	$Sy = \frac{ad - bc}{ad + bc} $ (7)	
1	c = sum(1 for i in range(len(x)) if x[i] == 0 and y[i] == 1) $d = sum(1 for i in range(len(x)) if x[i] == y[i] == 0)$	$\int ad + bc$	
	d = sum(1 for i in range(len(x)) if x[i] == y[i] == 0)		
	return $(a * d - b * c) / (a * d + b * c)$ if $(a * d + b * c) != 0$ else 0		

Метрика Сокала-Мишнера подходит для задач, где важно учитывать все типы совпадений, а также принимает во внимание и совпадения нулей, в формуле d – количество совпадений 0-0 (таблица 1).

Метрика Кульжинского оценивает степень преобладания совпадений 1-1 над различиями (таблица).

В свою очередь, метрика Юла интересна тем, что даёт высокие значения при сильной зависимости признаков. Юл использует корреляционное соотношение (таблица).

Каждая метрика отражает различные аспекты сходства. Методы Рассела-Рао, Жаккара и Дайса ориентированы на совпадения 1-1, тогда как Сокала-Мишнера учитывает и совпадения 0-0. Юл, в отличие от других, рассматривает статистическую взаимосвязь признаков.

Для кибербезопасности важно комбинировать несколько метрик, чтобы получить всесторонний анализ. В частности, метод Кульжинского позволяет обнаруживать значимые расхождения, а Юл – выявлять устойчивые закономерности [4, c.557].

Разработанная на Python система классифицирует объекты по бинарным признакам, что важно для анализа киберугроз и оценки конфигураций ПО. Использование семи метрик обеспечивает комплексный анализ данных. В будущем планируется интеграция машинного обучения для улучшения точности прогнозирования уязвимостей и адаптации к новым угрозам.

Список использованных источников

- 1. Ховард Р. Кибербезопасность: главные принципы. Обновленные стратегии и тактики. СПб.: Питер, 2024. 320 с.: ил. (Серия «Библиотека программиста»). ISBN 978-5-4461-2201-1.
- 2. Александров Я.А., Сафин Л.К., Трошина К.Н., Чернов А.В. Статический бинарный анализ мобильных приложений для платформы Android по требованиям информационной безопасности. 2023.
- 3. Шапиро С.Дж. Fancy Bear Goes Phishing: The Dark History of the Information Age, in Five Extraordinary Hacks. Нью-Йорк: Farrar, Straus and Giroux, 2023. 432 с. ISBN 978-0-374-60117-1.
- 4. Арванова, С. М., Ксенофонтов, А. С., Москаленко, Л. А. Криптографические механизмы безопасности // Научный альманах. -2015. -№ 7(9). C. 578–580.