УДК630:232.41

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПОЛУЧЕНИЯ НОВЫХ ОРГАНОМИНЕРАЛЬНЫХ УДОБРЕНИЙ С ИСПОЛЬЗОВАНИЕМ ОТХОДОВ ГРИБНОГО ПРОИЗВОДСТВА

Кулик Александр Антонович, Министр лесного хозяйства Республики Беларусь, Копытков Владимир Васильевич, д.сх.н., профессор, ГНУ «Институт леса НАН Беларуси», Пироговская Галина Владимировна, д.с.-х.н., профессор, РУП «Институт почвоведения и агрохимии НАН Беларуси», Авдашкова Людмила Павловна, к.ф.-м.н., доцент, Белорусский торгово-экономический университет потребительской кооперации

Kulik Alexander, Minister of Forestry of the Republic of Belarus, mlh@mlh.gov.by
Kopytkov Vladimir, Doctor of Agricultural Sciences, Professor,
Forest Institute of the National Academy of Sciences of Belarus, kopvo@mail.ru
Pirogovskaya Galina Vladimirovna, Doctor of Science, Professor, brissa_pir@mail.ru
Institute of Soil Science and Agrochemistry of the National Academy of Sciences of Belarus,
Avdashkova Lyudmila, Ph.D., Associate Professor, avdashkova@mail.ru
Belarusian University of Trade and Economics of Consumer Cooperation

Математическое моделирование различных ингредиентов и их концентраций позволило разработать технологию получения новых удобрений на основе отходов грибного производства.

Ключевые слова: математическое моделирование, органоминеральные удобрения, степень готовности, агрохимический показатель.

Mathematical modeling of various ingredients and their concentrations allowed us to develop a technology for obtaining fertilizers based on mushroom production waste with optimal agrochemical indicators.

Keywords: mathematical modeling, organomineral fertilizers, degree of readiness, agrochemical indicator.

Проблема утилизации отходов лесного и сельскохозяйственного производства является одной из самых острых экологических проблем современности. Масштабы накопления таких отходов постоянно растут и отрицательно влияют на загрязнение окружающей среды. Многие виды этих отходов обладают ценными свойствами, делающими их пригодными для хозяйственного использования. Это открывает новые перспективы для переработки отходов и превращения их из источника экологических проблем в ценный вторичный ресурс.

По информации Министерства лесного хозяйства, в 2020 году объёмы древесных опилок составили 400 тысяч м³, что в четыре раза больше, чем в 2010 году. Этот показатель свидетельствует о значительном росте объемов отходов, требующих эффективной утилизации. Аналогичная ситуация наблюдается и в других секторах сельского хозяйства. Так, по данным СООО «Бонше» в Брестском районе ежегодно образуется 16,8 тысяч тонн отходов грибного производства (ОЖП). В условиях Кореневской экспериментальной лесной базы НАН Беларуси при выращивании вешенки обыкновенной и шиитаки ежегодно образуется более 60 тонн отходов грибного производства.

Исследование по технологии получения и применения органических удобрений проведены в соответствии с «Наставлением по выращиванию посадочного материала деревьев и кустарников в лесных питомниках Белоруссии» [1, с. 20]. Степень готовности органоминеральных удобрений

(ОМУ) и агрохимические показатели определяли в лаборатории «Новых форм удобрений и мелиорантов» ГНУ «Института почвоведения и агрохимии НАН Беларуси». Степень готовности ОМУ определяли соотношением С/N, которое равно 25:1 [2, с. 118].

Исследования проведены с применением современных методов планирования эксперимента, которые обеспечивают более эффективное и целенаправленное изучение физико-химических свойств отходов грибного производства, а также разработку оптимальных технологий их переработки с минимальными затратами и максимальным лесоводственно-экономическим эффектом [3, с. 351. Для оптимизации составов различных ингредиентов и их концентраций в удобрении использовали симплекс-решетчатые планы, предложенные Шеффе [4, с. 120], который ввел каноническую форму полинома степени n для решения задачи построения математической модели «состав-свойство». После определения оценок коэффициентов уравнения регрессии проводили статистический анализ полученных результатов: проверяли адекватность уравнения и строили доверительные интервалы значений отклика. «Симплекс-решетчатые» планы Шеффе не имеют степеней свободы, поэтому для проверки адекватности проводили опыты в дополнительных «контрольных точках». Полученные аппроксимирующие модели различных порядков использовали для предсказания откликов в любой точке симплекса. Точность предсказания отклика какой-либо фиксированной моделью различна в разных точках симплекса зависит от экспериментальной ситуации (дисперсии опыта, количества параллельных наблюдений в узлах симплексной решетки). Зная дисперсию предсказанного значения отклика и число параллельных опытов г, легко найти ошибку предсказанных значений отклика в любой точке диаграммы «состав-свойство». Так как оптимальные значения концентраций ингредиентов органоминеральных удобрений для одних свойств максимальны, а для других минимальны, то на основании применения коэффициентов значимости определяли концентрации, которые способствуют оптимальному проявлению сразу нескольких ингредиентов.

В таблице 1 представлена динамика изменения степени готовности органоминеральных удобрений с использованием отходов грибного производства и микробиологического препарата «Экобактер». Микробиологический препарат (МБП) «Экобактер» производится в г. Гомеле на основе бактерий *Lactobacillus spp*, *Enterococcus durans*, *Rhodopseudomonas palustris*, представляет собой культуральную жидкость, содержащую бактериальные клетки и продукты метаболизма вышеуказанных бактерий [5, с. 2].

Таблица 1. – Динамика степени готовности органоминеральных удобрений в зависимости от использования отходов грибного производства

Соотор и осстионноми	Повторность	Показатель соотношения С/N, месяц						
Состав и соотношение ингредиентов	варианта опыта	1	2	3	4	5		
1	2	3	4	5	6	7		
1. Торф, древесные опил-	1	66,8	38,4	25,6	22,8	18,9		
ки, хвойная кора, ОЖП и ОГП 1,0:1,0:0,5:1,0:1,0.	2	61,3	36,5	24,1	20,3	15,7		
	3	65,1	36,4	25,3	21,1	18,2		
	ср. знач.	64,2±6,99	37,1±2,79	25,0±1,97	21,4±3,17	17,6±4,18		
2. Торф, древесные опилки, хвойная кора, ОЖП, ОГП 1,0:1,0:0,5:0,5:0,5.	1	68,4	39,7	29,3	24,9	19,0		
	2	63,5	35,6	25,1	23,7	17,7		
	3	61,1	39,6	28,4	24,0	19,4		
	ср. знач.	66,0±9,24	38,3±5,8	27,6±5,49	24,2±1,55	18,7±2,2		
3. Торф, древесные опил-	1	66,4	35,9	25,7	20,9	20,3		
ки, хвойная кора, ОГП	2	63,2	32,1	22,3	22,4	18,7		
1,0:1,0:0,5:1,0+10%-ный раствор МБП.	3	65,4	32,8	25,8	23,0	19,2		
	ср. знач.	65,0±4,07	33,6±5,02	24,6±4,95	22,1±2,69	19,4±2,03		
4. Торф, древесные опилки, хвойная кора, ОГП 1,0:1,0:0,5:1,0.	1	64,3	30,4	27,3	24,1	19,6		
	2	60,2	29,2	29,9	25,3	20,2		
	3	64,8	37,6	30,1	25,6	21,4		
	ср. знач.	63,1±6,27	32,4±11,29	29,1±3,88	25,0±1,97	20,4±2,28		

Окончание таблицы 1

1	2	3	4	5	6	7
5. Торф, древесные опил-	1	71,4	31,5	26,0	20,9	18,9
ки, хвойная кора, ОЖП,	2	68,5	27,4	24,7	19,0	17,0
ΟΓΠ (1,0:1,0:0,5:1,0:1,0).	3	70,4	29,3	24,3	21,6	19,9
	ср. знач.	70,1±3,66	29,4±5,10	25,0±2,21	20,5±3,34	$18,6\pm3,70$
6. Торф, древесные опил-	1	73,6	24,3	19,4	17,1	19.4
ки, хвойная кора, ОЖП,	2	70,4	26,1	22,5	19,4	18,3
ОГП	3	72,0	24,6	21,1	19,3	13,6
(1,0:1,0:0,5:1,0:1,0)+10%- ный растворМБП.	ср. знач.	72,0±3,97	25,0±2,39	21,0±3,86	18,6±3,23	17.1±7,29

Как видно из таблицы 1 использование различных ингредиентов в составе органоминеральных удобрений способствует получению готового субстрата для выращивания посадочного материала в течение 2-4 месяцев.

При использовании микробиологического препарата «Экобактер» на варианте опыта №6 при соотношении ингредиентов торф, древесные опилки, хвойная кора, отходы жизнедеятельности птиц (ОЖП), отходы грибного производства (ОГП) + МБП (1,0;1,0;0,5;1,0;1,0) готовность органоминеральных удобрений зафиксирован на 2-ом месяце исследований. На вариантах опыта №1, №3 и №5 готовность ОМУ получена на 3-ьем месяце.

На всех остальных вариантах опыта степень готовности органоминеральных удобрений достигается на 3-ьем и 4-ом месяцах исследований. Использование матрицы планирования экспериментов позволило определить оптимальные концентрации всех ингредиентов и целевой добавки в виде микробиологического препарата «Экобактер».

В таблице 2 приведены оптимальные агрохимические показатели готовых органоминеральных удобрений на основе отходов грибного производства. Проведенные нами предварительные исследования позволили установить оптимальные агрохимические показатели: органическое вещество 60-65%; рН 5,0-5,5; общий азот 2,0-2,4%; фосфор 0,8-1,1%; калий 1,1-1,5%.

Таблица 2. – Агрохимические показатели органоминеральных удобрений с использованием отходов грибного производства

Состав органоминерального	Органическое вещество, %	рН .	Содержание общих форм основных химических элементов, %				
субстрата			азота	фосфора	калия		
Кобринский опытный лесхоз							
1. Торф, древесные опилки, хвойная кора, ОЖП, ОГП (1,0:1,0:0,5:1,0:1,0).	58,3	5,7	2,0	0,7	0,8		
2. Торф, древесные опилки, хвойная кора, ОЖП и ОГП (1,0:1,0:0,5:0,5:0,5).	62,5	5,4	2,3	0,9	1,3		
3. Торф, древесные опилки, хвойная кора, ОГП (1,0:1,0:0,5:1,0)+МБП.	61,7	5,4	2,2	1,1	1,4		
4. Торф, древесные опилки, хвойная кора, ОГП (1,0:1,0:0,5:1,0).	57,4	5,5	1,7	0,7	0,9		
Кореневская ЭЛБ							
5. Торф, древесные опилки, хвойная кора, ОЖП, ОГП (1,0:1,0:0,5:1,0:1,0).	58,3	5,6	1,9	0,9	0,9		
6. Торф, древесные опилки, хвойная кора, ОЖП, ОГП (1,0:1,0:0,5:1,0:1,0)+ МБП.	63,2	5,4	2,4	0,9	1,2		

Как видно из данной таблицы наибольшее содержание органического вещества (63,2%) находится при использовании торфа, древесных опилок, хвойной коры, ОЖП, отходов грибного производства при соотношении $1,0:1,0:0,5:1,0:1,0+MБ\Pi$.

На опытном объекте в условиях Кореневской ЭЛБ с использованием отходов грибного производства при выращивании вешенки обыкновенной содержание органического вещества не достигает оптимальных показателей (58,3%). Содержание общего азота и общего калия также не соответствуют оптимальным показателям.

Водородный показатель зависит от ингредиентов ОМУ и варьирует в интервале от 5,4 до 5,7.

На двух вариантах №1 и №4 в Кобринском опытном лесхозе с использованием отходов грибного производства при выращивании вешенки обыкновенной содержание органического вещества не достигает оптимальных показателей (60,0-65,0%). На данных опытных объектах содержание общего азота и общего калия также не соответствуют оптимальным показателям.

На вариантах опыта №2 и №3 в Кобринском опытном лесхозе содержание органического вещества составляет 61,7-62,5%, а водородный показатель равен 5,4. Анализ содержания общих форм азота, фосфора и калия показывает, что данные элементы питания соответствуют оптимальным показателям.

Таким образом, проведенные исследования по получению органоминеральных удобрений буртовым способом с использованием отходов грибного производства и микробиологического препарата «Экобактер» позволяют на основе математического моделирования разработать оптимальные агрохимические показатели новых видов удобрений для выращивания стандартного лесного посадочного материала.

Список использованных источников

- 1. Наставление по выращиванию посадочного материала деревьев и кустарников в лесных питомниках Белоруссии // Гос. ком. СССР по лесн. хоз-ву, МЛХ БССР; сост. А.И. Савченко [и др.]. Минск: Ураджай, 1986. 111 с.
- 2. Копытков, В.В. Научно-технологические аспекты разработки и исследования композиционных материалов для лесовыращивания: монография / В.В. Копытков. Мозырь: МГПУ им. И.П. Шамякина, 2022. 190 с.
- 3. Зайцев, Г.Н. Математическая статистика в экспериментальной ботанике / Г.Н. Зайцев. М.: Наука, 1984.-424 с.
- 4. Гартман, Т. Н. Основы компьютерного моделирования химико-технологических процессов / Т. Н. Гартман, Д. В. Клушин. М.: ИКЦ «Академкнига», 2006. 416 с.
- 5. Технические условия ТУ ВУ 810001157.013. 2022. Препарат микробиологический «Экобактер». -10 с.