УДК 657.622

## АНАЛИТИЧЕСКОЕ ОБОСНОВАНИЕ НАБОРА ПАРАМЕТРОВ ДЛЯ ОПРЕДЕЛЕНИЯ ЦЕЛЕСООБРАЗНОСТИ И ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Мухин Александр Владимирович, аспирант Ярославский государственный университет имени П.Г. Демидова, Российская Федерация

Alexander Vladimirovich Mukhin
PhD student Yaroslavl State University named after P.G. Demidov,
Russian Federation, <a href="mailto:muhin\_96@list.ru">muhin\_96@list.ru</a>

**Аннотация.** Современные информационные технологии все больше оказывают влияние на бизнес и требуют качественного, быстрого и эффективного управления всеми процессами компаний. Внедрение автоматизированных информационных решений дорогостоящий и высоко рискованный процесс, который обуславливает необходимость усовершенствования методики оценки целесообразности вложений в автоматизацию на всех этапах создания и эксплуатации информационной системы, а также повышению ее эффективности.

**Ключевые слова:** целесообразность, эффективность, автоматизация, производственные процессы, цифровая трансформация, автоматизированная система управления.

Современные рыночные условия характеризуются высокой динамикой, глобализацией конкуренции и растущими требованиями потребителей к качеству и кастомизации продукции. В этом контексте автоматизация производственных процессов перестала быть опцией и превратилась в необходимое условие для выживания и развития промышленных предприятий. Однако сами по себе инвестиции в автоматизацию не являются гарантией успеха. Неправильно выбранный объект автоматизации, неадекватная оценка затрат или игнорирование косвенных эффектов могут привести к значительным финансовым потерям и дестабилизации производства.

Система управления предприятием — это система управленческих функций, направленных на осуществление прогноза, планирования, учета, анализа, контроля и мониторинга. Управление всегда реализуется через информационные потоки внешней и внутренней среды, а именно через коммуникационные процессы с использованием современных информационных технологий. Этим целям служит автоматизированная информационная система, которая определяется через совокупность информации экономических методов и математических моделей, организационно-технические средства и квалифицированный персонал организации. Предназначением такой системы является поиск необходимой информации, ее сбор, хранение и обработка, таким образом, чтобы максимально точно удовлетворять потребности управленческого персонала.

Согласно исследования Середенко Е. С., автоматизированная информационная система в первую очередь направлена на преобразование собранных данных в ценную информацию. Такое преобразование всегда сопряжено с индивидуально устроенными бизнес-процессами, соответствующими аналитическим инструментами по переработке данных на этих участках и разнообразием задач, решаемых при помощи аналитики и автоматизации [1].

Теоретическую основу данной работы составляют труды ведущих отечественных учёных, изучавших влияние ИТ на деятельность организации, таких как Е. С. Середенко [1], А. В. Медведева [2], А. В. Лаптевой, Ю. Н. Чеснокова [3], В. М. Гребенюка [4], Н. С. Ефимовой, А. А. Ермакова [5] и других.

Анализ и оценка мнений исследователей показал, что в области использования специализированного программного обеспечения и оказания положительного эффекта на управленческие решения нет единого подхода, а мнения ученых разделяются на две противоположные точки зрения. Одна точка зрения состоит, в том, что автоматизация программного обеспечения трудноизмеримый процесс, другая — методика оценки ничем не отличается от процесса оценки обычного инвестиционного проекта.

Данная ситуация свидетельствует о высокой значимости исследований в этой области и необходимости развития методик оценки эффективности автоматизированных систем управления. Кроме того, работа информационной службы будет эффективной, если информационная инфраструктура экономического субъекта будет соответствовать поставленным целям и задачам компании в целом. Соответственно любые финансовые вложения в нее будут являться стратегическим инвестиционным проектом.

Классические методы оценки эффективности автоматизированных систем управления предприятием, такие как расчет срока окупаемости (Payback Period) или простого возврата на инвестиции (ROI), зачастую не учитывают всей совокупности факторов, влияющих на конечный результат.

Таким образом, актуальность исследования заключается в разработке структурированного набора параметров, позволяющего провести многокритериальный анализ целесообразности и эффективности автоматизации, объединяющий как количественные, так и качественные аспекты.

Для всесторонней оценки производственных процессов автором статьи предложено разделить все параметры на четыре основные группы: техникотехнологические, экономические, операционные и стратегические.

**Первая группа «Технико-технологические параметры»** показывает уровень стандартизации продукции и технологических процессов. Данная группа параметров должна характеризоваться:

- высокой степенью стандартизации, которая является фундаментом для успешной автоматизации. Нестабильные, часто меняющиеся процессы, усложняют и удорожают внедрение;
- состоянием и модернизацией основного оборудования, обеспечивающие возможность оценки физического и морального износа действующих станков, линий, возможность их интеграции в автоматизированную систему (наличие интерфейсов, совместимость с промышленными сетями);
- стабильностью и повторяемостью качества сырья и материалов, то есть нестабильное качество входных ресурсов требует сложных и дорогостоящих систем адаптивного управления;
- трудоемкостью, трудозатратностью и комплексностью операций. В данном случае речь идет об «очистке» бизнес-процессов от тяжелых, опасных и постоянно повторяющихся, а также требующих большого количества времени и постоянной точности операций;
- способностью и готовностью информационной и технологической инфраструктуры, то есть наличием реальных возможностей для увеличения мощностей серверов, инфраструктуры сетей и комплекса защиты баз данных.

**Вторая группа «Экономические параметры»** включает в себя следующий набор показателей:

- капитальные затраты (CAPEX): стоимость оборудования (роботы, ЧПУ, сенсоры, АСУ ТП), стоимость лицензий на программное обеспечение (SCADA, MES, ERP), затраты на проектирование, запуск, наладку, монтаж, ремонт и модернизацию инфраструктуры (энерго-, электроснабжение, очистные сооружения);
- затраты операционного блока (OPEX): специфические технические, количественные, качественные характеристики для современного оборудования, затраты на переобучение, дополнительное образование, переквалификацию или повышение квалификации персонала, новые требования к экономической и технической безопасности;
- экономические и временные выгоды: сокращение ФОТ путем замены человеческих ресурсов техникой, снижение затрат на производство продукции, уменьшением производственного брака, увеличением объема производства и выпуска готовой продукции, повышением качества продукции, снижение затрат на логистику и маркетинг.

Далее с учетом выше названных характеристик уже рассчитываются стандартные показатели оценки эффективности инвестиций такие, как: срок окупаемости (PP), чистый дисконтированный доход (NPV), показатель доходности инвестиций (IRR) и индекс рентабельности (PI).

*Третья группа «Операционные параметры»* состоит из следующих показателей:

- производительности, то есть отражает рост выпуска продукции в единицу времени (штук/час, тонн/смену);
- качества продукции, характеризует снижение уровня брака (PPM дефектов на миллион), повышение стабильности ключевых параметров продукции (Cp, Cpk индексы воспроизводимости процессов);
- гибкости и масштабируемости производства, учитывающая скорость переналадки оборудования под новый продукт и возможность быстрого увеличения объемов выпуска;
- времени операционного цикла (Lead Time), призванного сокращать общее время от получения заказа до отгрузки готовой продукции;
- коэффициента использования оборудования (OEE Overall Equipment Effectiveness) комплексного показателя, объединяющего доступность, производительность и качество, и являющегося прямым индикатором успеха автоматизации;
- объема незавершенного производства (НЗП), то есть в данном случае необходимо стремиться к снижению уровня НЗП за счет лучшей синхронизации операций.

**Четвертая группа «Стратегические и социальные параметры»** наделена следующими характеристиками:

- увеличением безопасности труда, то есть ориентацией на исключение вредного производства, опасных зон или минимизацию травм на производстве;
- стабильностью и монотонностью бизнес-процессов, то есть снижением зависимости от «человеческого фактора», колебаний в квалификации персонала, текучести кадров;
- способностью к инновациям, что может быть реализовано с помощью генерации больших массивы данных (Big Data), которые могут быть использованы для предварительного анализа и непрерывного улучшения бизнес-процессов;
- улучшением деловой репутации и повышением конкурентоспособности компании, оптимизацией логистических цепочек и предложением лучших цен и качества продукции;
- освобождением работников от простых и рутинных дел и перемещением фокуса на решение сложных, требующих человеческого участия, задач (человеческое общение, архитектурное программирование, эффективный контроль). Данная характеристика потребует инвестиций в переобучение и может вызывать социальное сопротивление, но в конечном итоге принесет значительный доход компании.

Таким образом, можно сделать вывод, внедрение автоматизации — это сложный и многогранный процесс, успех которого зависит от всестороннего предварительного анализа. Предложенный в статье набор параметров формирует целостную систему оценки, выходящую за узкие рамки прямого финансового расчета. Использование данной системы позволит снизить риски неэффективного инвестирования, выбрать наиболее подходящие для автоматизации процессы, обосновать

управленческое решение не только цифрами, но и стратегическими аргументами, учесть долгосрочное влияние автоматизации на конкурентоспособность и устойчивость предприятия. Поэтому перенос фокуса со стандартной модели на комплексный подход к системе параметров является обязательным условием для определения необходимости и обоснования эффективности автоматизации производственных процессов, что будет способствовать успешной трансформации и развитию современного производства.

## Список использованных источников

- 1. Середенко, Е.С. Оценка экономической эффективности аналитических информационных систем: диссертация кандидата экономических наук / Е.С. Середенко. Текст: электронный // Dissercat.com: [сайт]. 2014. Режим доступа URL: <a href="https://www.dissercat.com/content/otsenka-ekonomicheskoi-effektivnosti-analiticheskikh-informatsionnykh-sistem">https://www.dissercat.com/content/otsenka-ekonomicheskoi-effektivnosti-analiticheskikh-informatsionnykh-sistem</a> (Дата обращения: 10.10.2025)
- 2. Медведев, А.В. Оптимизационная модель оценки экономической эффективности информационно-технологических проектов // Научное обозрение. Технические науки. 2023. № 2. С. 16-21. Режим доступа URL: https://science-engineering.ru/ru/article/view?id=1428 (Дата обращения: 12.10.2025). DOI: https://doi.org/10.17513/srts.1428.
- 3. Лаптева, А. В. Оценка эффективности использования ИИ в производстве методом Монте-Карло / А. В. Лаптева, Ю. Н. Чесноков. Текст: электронный // XVII международная конференция «Российские регионы в фокусе перемен»: сборник докладов (Екатеринбург, 17–19 ноября 2022 г.). Екатеринбург: ООО Издательский Дом «Ажур», 2023. С. 662-666.
- 4. Гребенюк, В.М. Оценка целесообразности внедрения автоматизированного тестирования // Интернет-журнал «НАУКОВЕДЕНИЕ». 2013. № 1. Режим доступа URL: <a href="https://cyberleninka.ru/article/n/otsenka-tselesoobraznosti-vnedreniya-avtomatizirovannogo-testirovaniya">https://cyberleninka.ru/article/n/otsenka-tselesoobraznosti-vnedreniya-avtomatizirovannogo-testirovaniya</a> (Дата обращения: 12.10.2025).
- 5. Ефимова, Н.С., Ермаков, А.А. Экономическое обоснование направлений автоматизации процессов планово-производственного планирования на высокотехнологичных предприятиях (на примере авиастроения) // Инновации и инвестиции. − 2018. − № 11. − с. 309-315.