МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПЛАТЕЖНОЙ СИСТЕМЫ

Т.В. Понкратьева, аспирантка Научный руководитель — **Н.Н. Писарук**, к.э.н., доцент Белорусский государственный университет

Существует перечень вопросов адресованных разработчикам платежных систем. Одним из ключевых вопросов является — насколько дорогой должна быть дневная ликвидность. Теоретические модели (к примеру, Freeman (1996), Buckle и Campbell(2003)) предполагает, что издержки дневной ликвидности в платежной системе налагают ограничения на участников системы, что может вызвать рост искажения в торговых и потребительских моделях. С практической точки зрения, расчетные банки все чаше сталкиваются с вызовом управления ликвидностью в режиме реального времени. Центральные банки пытались снизить издержки дневной ликвидности банков прямо (по средствам расширения дневного кредита) и косвенно через хорошее моделирование системы.

Платежи одного банка являются источником дневной ликвидности для банка-получателя, которую он может впоследствии использовать для осуществления собственных платежей. Если банки оборачивают ликвидность достаточно быстро, совокупная потребность в дневной ликвидности может быть существенно снижена. Когда дневная ликвидность дорогая банки могут пытаться экономить на сумме кредита, увеличивая зависимость от входящих платежей. В то время как такой банк накапливает достаточную ликвидность, он будет откладывать исходящие платежи. Эффект от такого поведения будет снижать общий уровень обращения ликвидности в платежной системе. Если сравнительно большое число банков будет вести себя так, то поведение станет саморазрушающим.

Цель этой статьи определить потенциал различных моделей расчетов, оценить эффективность платежных систем, а также влияние распределения потока платежей на качество платежной системы.

Расчеты в платежной системе проводятся в рамках размера ликвидных средств находящихся на корреспондентских счетах банков. В случае недостаточности имеющихся средств банк обращается к центральному банку за кредитом. Полученный кредит имеет платную основу и должен быть возвращен не позднее первого расчетного периода следующего операционного дня. Платежный поток банка складывается из потока срочных и несрочных платежей. Срочные платежи проводятся в режиме реального времени на валовой основе, несрочные накапливаются в течение расчетного периода, а затем проводится их взаимозачет. Платежная система представлена 2 расчетными банками: исследуемым банком и условным расчетным банком, представляющим собой агрегированные расчетные действия системы в отношении исследуемого банка.

С целью оценки влияния условий расчетов на качество работы платежной системы рассмотрим несколько моделей расчетного процесса.

Модель 1, предполагает применение тарификационных коэффициентов в зависимости от времени проведения платежа. Данные коэффициенты применяются для выравнивания платежного потока и перераспределения платежной нагрузки с конца операционного дня на его первую половину. Рассмотрим также ситуацию применения тарификационных коэффициентов применительно ко времени отправки платежа в систему и назовем моделью 2.

Модель 3 предусматривает наличие альтернативы - аннулировать платежи, для проведения которых не хватило средств в периоде 4, либо в периоде 5 перевести оставшиеся платежи из разряда несрочных в срочные и, взяв кредит провести их на валовой основе.

Модель 4 предусматривает проведение расчетов по несрочным платежам в рамках выделенного резерва. Очевидно, что размер резерва будет зависеть от суммы платежей, которые банк намеревается провести в периоде t. В периоде 4 банк стремится провести максимальное количество платежей, поэтому для проведения расчетов привлекается вся имеющаяся у банка ликвидность.

Модель 5 предусматривает наличие штрафов, применяемых к абсолютной величине отклонения платежей от равномерного распределения платежного потока в течение дня.

Сравнение результатов проводилось по нескольким критериям:

- 1. прибыль, получаемая банком от предоставления расчетных услуг;
- 2. средний размер очередей ожидания средств по несрочным платежам банков 1 и 2 в течение операционного дня;

- 3. средний размер сумм аннулированных платежей банками 1 и 2;
- 4. средний размер кредитования обоих банков.

Данные, используемые в моделировании, были сгенерированы на основе характеристик платежных потоков и уровней ликвидности десяти крупнейших банков с точки зрения объемов проводимых платежей. На долю этих банков приходится 87% от общего количества платежей и 70% от общей суммы межбанковского платежного оборота.

Модель Критерий	1	2	3	4	5
1	0.651528	0.651736	0.650856	0.651548	0.620704
2	12.0077	57.9552	7.3376	6.7842	9.1411
3	6.8665	7.8087	0	1.8928	4.1666
4	1.7325	1.9425	3.405	2.1525	3.29

Таблица 1 – Результаты сравнения моделей на основе выбранных критериев

Модель 1 по всем параметрам, за исключением прибыли, доминирует модель 2. Таким образом, получение банком прибыли большей всего на 0,03% влечет за собой ухудшение условий расчетов по всем остальным параметрам.

В настоящее время в системе BISS тарификационные коэффициенты применяются ко времени отправки платежа (модель 2). Следовательно, НБ РБ, стремящемуся улучшить ситуацию с аннулированием и повысить скорость проведения платежей, можно рекомендовать изменить свою политику в части применения тарификационных коэффициентов ко времени проведения платежа, а не его отправки в систему. Это приведет к несущественным потерям в доходности платежных систем банков, однако позволит существенно улучшить качество проведения расчетов.

Сравним результаты проведения расчетов в соответствии с моделями 1, 3, 4, 5. Поскольку ни одна из оставшихся моделей не доминирует, то воспользуемся методом DEA (Data Envelopment Analysis) для сравнения и ранжирования представленных моделей [3].

Модель	1	3	4	5
1	0.8514	0.0727	1	0.8472
3	1	1.4591	0.7754	0.9236
4	1	0.0807	1.2279	1
5	0.6744	0.0355	0.7653	0.7070

Таблица 2 – Эффективности моделей рассчитанные методом DEA

Результаты показывают, что даже при оптимальных весовых коэффициентах модель 1 не является эффективной, т.к. ее рейтинг меньше 1. Модели 3 и 4 с этими же весовыми коэффициентами предпочтительнее модели 1. При этом видно, что модели 3 и 4 предлагают более эффективные механизмы расчетов, чем остальные модели.

Таким образом, замена в стандартной процедуре расчетов аннулирования на привлечение дополнительных кредитных ресурсов, либо дополнение алгоритма расчетов возможностью осуществления расчетов по несрочным платежам в рамках выделенного резерва повышает эффективность. В первом случае платежная система избавляется от аннулирований, т.е. добивается окончательности расчетов в текущем операционном дне, но при этом ей требуются большие объемы дневной ликвидности. В случае наличия возможности осуществления расчетов по несрочным платежам в рамках выделенного резерва платежная система функционирует с меньшим привлечением кредитных средств, но с наличием аннулирований платежей.

Вывод представленной работы заключается в том, что последние разработки в области проектирование и моделирования платежных систем позволяют более гибко спрогнозировать последствия принятия различных управленческих решений на функционирование системы. Изменения в структуре платежных систем предоставляют банкам возможность обеспечения более ранних расчетов при меньшей сумме ликвидности, добиваться баланса издержек, наиболее отвечающего их финансовым потребностям.

Список использованных источников

- 1. Simon Buckle, Erin Campbell Settlement bank behaviour and throughput rules in an RTGS payment system with collateralised intraday credit// Issued by the Centre for Central Banking Studies. London: Bank of England, 2003 34 p.
- 2003. 34 p.

 2. Freeman S. The payments system, liquidity, and rediscounting// American Economic Review, 1996, Vol. 86, 5 p.
- 3. Charnes A. Data Envelopment Analysis: Theory, Methodology, and Applications// Kluwer Academic Publishers, 1994, pp. 52-54.