ИЗМЕНЕНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СПОРТСМЕНОВ В ПРОЦЕССЕ ТРЕНИРОВКИ ПО ДАННЫМ ПАК « ОМЕГА – C»

Л.Л. Шилович

Гомельский государственный медицинский университет, Беларусь, shilov 11@ mail.ru

Введение. Эффективность управления тренировочным процессом определяется наличием исчерпывающей, объективной и своевременной информации о текущем функциональном состоянии организма спортсменов, оцениваемого с использованием новых информационных технологий анализа биоритмологических процессов организма. Данный принцип реализован в созданной системе регистрации и анализа вариабельности сердечного ритма ПАК «Омега – С».

Традиционный набор методик анализа сердечного ритма, применяемый в компьютерных системах функциональной диагностики, включает статистический, геометрический, спектральный, и автокорелляционный анализы. Эти методики отражают состояние сердечно— сосудистой и вегетативной систем, состояние и напряженность механизмов регуляции, однако не содержат интегративной информации о спортивной готовности спортсмена. Принципиальным отличием ПАК «Омега — С», является использование разработанного фирмой «Динамика» (г. Санкт-Петербург) методов математического анализа сложных динамических систем. Данный способ основывается на том, что каждый физиологический процесс имеет свой уникальный ритм, динамика этих ритмов подобна, и находит свое отражение в ритмах сердца. То есть все физиологические процессы в организме имеют сходную динамическую структуру в разных масштабах времени, обладая при этом свойством определенной синхронности и последовательности.

Цель исследования — изучить влияние тренировочной нагрузки на показатели функционального состояния для определения степени расходования ресурсов организма в процессе тренировки.

Методы Исследование проведено на базе Научно–практического центра спортивной медицины г. Гомеля. Обследованы спортсмены, занимающиеся гандболом. Возраст обследуемых 15 – 16 лет. Группа состояла из 30 человек. Обследование проходило с применением программно–аппаратного комплекса «Омега–С». Для получения информации в течение 5 минут выполнялась регистрация ЭКГ (запись не менее 300 кардиоциклов). Запись осуществлялась в 9–10 часов перед нагрузкой и через 20 минут во время тренировки. Всего проведено 60 обследований – 30 до нагрузки и 30 во время. Нагрузка представляла собой разминку, растяжку и отработку системы игры.

При расшифровке результатов обследований, включающих более 50 параметров ПАК «Омега — С», общую оценку функционального состояния демонстрируют показатели, относимых в соответствии с программой ПАК «Омега — С» к категории экспресс—контроля :

- А уровень адаптации спортсмена к физическим нагрузкам;
- В степень тренированности спортсмена;
- С уровень энергетического обеспечения физических нагрузок;
- D текущее психоэмоциональное состояние спортсмена;
- H интегральный показатель «спортивной формы».

Эти показатели нормированы и выражены в процентах от возможных 100% [1].

Первоначально программой оценивается показатель уровня тренированности организма по вариационному анализу ритма сердца. При этом в программе ПАК «Омега» выводятся основные показатели работы сердца: Индекс напряжения регуляторных систем «ИН» — характеризует, в основном, активность симпатического отдела вегетативной нервной системы. Индекс вегетативного равновесия «ИВР» — указывает на соотношение между активностью симпатического и парасимпатического отделов. Показатель адекватности процессов регуляции «ПАПР» — отражает соответствие между активностью симпатического отдела вегетативной системы и ведущим уровнем функционирования СА—узла. Вегетативный показатель ритма «ВПР»— позволяет судить о сдвигах в вегетативном балансе со стороны парасимпатического отдела. Оценивается спектральный анализ : LF — отражает низкочастотный сердечный ритм, характеризует влияние вегетативной нервной системы на тонус сосудов. НF —высокие частоты, характерные при активности парасимпатического отдела вегетативной нервной системы. Тоtal — интегральный показатель отражающий полный спектр, включающий и гуморально—метаболический факторы.

Для оценки энергетического обеспечения анализировались показатели, относящиеся в соответствии с программой ПАК «Омега – С» к категории системного нейродинамического анализа. Анализ основан на преобразовании кривой записи ЭКГ в кодовую систему по двоичному принципу (разбивание на интерваллограммы) и позволяет оценивать уровень энергозатрат, связанных с синтезом гормонов, регулирующих работу сердца на гипаталамо—гипофизарном уровне. В результате выводятся величины энергетического обеспечения, энергетического баланса, показателя анаболизма и катаболизма, анализ кодов с нарушенной структурой, с измененной структурой и с нормальной структурой. Психоэмоциональное состояние выводилось в результате оценки активности и распределения биоритмов мозга в функциональном пространстве и базируется в системе ПАК «Омега» на идеи о сопряжённости сердечных и мозговых ритмических процессов. Искусственным путём выводится альфа—ритм и на его основании выстраиваются остальные ритмы мозга. Показатель, отражающий уровень адаптации, получен в результате фрактального анализа основанного на оценки степени гармонизации биоритмов сердца в процессе регистрации ЭКГ[1,2].

Для оценки центральной тенденции измерений при обработке значений в программе «Statistica» (V.7.0), в связи с ассиметричным распределением показателей, были использованы медиана, нижний и верхний квартиль распределения. Также для проверки статистической значимости изменений показателей использовался парный критерий Вилкоксона и принята допустимая ошибка в 5% (p < 0.05).

Результаты исследования. Показатели функционального состояния в соответствии с программой комплекса представляются в следующих вариантах (табл. 1).

Таблица 1 – Изменение показателей функционального состояния.

Показатели	Медиана		Нижн. кварт		Верхн. кварт	
	до нагруз ки	во время нагруз ки	до нагруз ки	во время нагрузки	до нагрузки	во время нагрузки
Частота сердечных сокращений	73,7	107,3	71,0	103,0	113,0	73,0
А – Уровень адаптации к физическим нагрузкам, %	78,6	3,5	76,91	1,1	88,5	5,7
В – Уровень тренированности организма, %	83,5	3,7	81,7	0,8	99,5	6,5
С – Уровень энергетического обеспечения, %	61,4	12,72	59,1	6,8	72,3	20,6
D – Психоэмоциональное состояние, %	63,5	11,2	53,8	8,6	75,2	16,8
H – Интегральный показатель спортивной формы, %	71,7	7,8	67,9	4,7	84,4	10,7
Индекс вегетативного равновесия, у.е.	106,7	938,7	61,34	772,2	117,6	1140,2
ВПР – вегетативный показатель ритма	0,36	0,14	0,29	0,12	0,40	0,17
Показатель адекватности процессов регуляции, у.е.	35,5	128,8	25,7	99,1	34,4	140,6
Индекс напряженности, у.е.	73,6	859,8	36,2	709,9	77,4	950,2
HF – Высокочастотный компонент спектра, мс ²	1301,8	15,9	1116,0	5,2	1868,9	22,9
LF – Низкочастотный компонент, мс ²	1352,3	82,9	349,6	51,7	1989,1	96,5
Total – Полный спектр частот, мс ²	3845,4	217,6	2170,1	162,4	5395,9	304,3
Коды с нарушенной структурой, %	0	100,0	0	86,8	0	100,0
Коды с измененной структурой, %	43,4	0	13,7	0	81,4	13,1
Коды с нормальной структурой, %	56,6	0	18,6	0	86,3	0
Показатель анаболизма, у.е.	140,0	20,0	126,0	18,0	161	28,0
Энергетическое обеспечение, у.е.	256,0	40,5	223,0	34,0	292	50,0
Энергетический баланс	0,8	0,8	0,7	0,7	0,9	0,9
Показатель катаболизма, у.е.	118,5	18,0	85,0	14,0	138	24,0

При парном сравнении критерием Вилкоксона между исходными данными и нагрузкой, результаты изменений были статистически значимые (p<0,000).

Судя по показателям сердечной деятельности для спортсменов до тренировки характерен доминирующий автономный контур регуляции ритма сердца. При преобразовании электрокардиограммы в кодовую комбинацию интерваллограмм для нейродинамического анализа отсутствовали коды с полностью нарушенной структурой.

Во время тренировочной нагрузки все показатели резко изменились: так показатель тренированности, отображающий уровень автономности работы сердца снизился до уровня 3,7%, что составляет изменение в 80%. Изменилась роль парасимпатического отдела в поддержании частоты ритма ведущего пейсмекера сердца: снизился ВПР на 61%. Снижение её роли в поддержании автономного контура регуляции работы сердца на 88% демонстрирует и повышение показателя ИВР. Возросло влияние на сердечно—сосудистую систему симпатического отдела: на 91% увеличился ИН. Повысилось влияние этого отдела и на уровень ритма синоатриального узла: на 73% увеличился показатель ПАПР и частота сердечных сокращений увеличилась на 31% [2,3]. Вместе с тем при анализе спектральных изменений заметно резкое падение не только волн спектра НF но и LF. Также значительное снижение полного спектра: Total упал с 3845,4 до 217,6. Исходя из этого, можно предположить, что работой сердца взяли на себя центральные уровни управления. Одновременно с этим, произошло снижение уровня гармонизации биоритмов головного мозга на

52%. При анализе данных следует отметить, что 20— минутная тренировочная нагрузка привела к недостаточности времени, необходимого для накопления энергии (анаболизм снизился на 86%), и времени необходимого для обеспечения энергией физической нагрузки (катаболизм снизился на 93%). Происходящие изменения, говорят о максимальном участии гипаталамо—гипофизарного уровня регуляции в обеспечении работы сердца во время интенсивной периодической тренировочной нагрузки. Как итог — снижение энергетического обеспечения на 48%. Также наблюдается переход интерваллограмм ЭКГ с уровня измененных и нормальных структур до 100% нарушенных. В целом во время тренировочной нагрузки произошло снижение показателя «спортивной формы» на 64%.

Выводы.

По данным ПАК «Омега—С» во время периодической тренировочной нагрузки функциональные изменения происходят за счёт активизации симпатического отдела вегетативной нервной системы в регуляции работы сердца. Тренировка проходит за счёт активного участия гипаталамо—гипофизарной системы.

Литература:

- 1. Система комплексного компьютерного исследования физического состояния спортсменов «Омега— С»: документация пользователя. СПб.: Научно—производственная фирма «Динамика», 2006. 64 с.
- 2. Ярилов С.В. Физиологические аспекты новой информационной технологии анализа биофизических сигналов и принципы технической реализации/ С.В. Ярилов СПб.: Научно–иссл. лаборатория «Динами-ка», 2001. 48 с.
- 3. Михайлов, В. М. Вариабельность ритма сердца. Опыт практического применения/ В. М. Михайлов. Иваново, 2000. 182 с.