МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ ПРИБЛИЖЕНИЙ НЕЯВНОГО ТИПА РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Н.И. Луцык, 5 курс

Научный руководитель — **О.В. Матысик**, к.ф.-м.н., доцент Брестский государственный университет имени А.С. Пушкина

1. **Постановка задачи.** В действительном гильбертовом пространстве H исследуется операторное уравнение I рода

$$Ax = y, (1)$$

где A — положительный ограниченный и самосопряженный оператор, для которого нуль не является собственным значением, однако принадлежит спектру оператора A, и, следовательно, задача некорректна. Пусть $y \in R(A)$, т.е. при точной правой части y уравнение (1) имеет единственное решение x. Для отыскания этого решения применяется неявная итерационная процедура

$$(E + \alpha^2 A^2) x_n = (E - \alpha A)^2 x_{n-1} + 2\alpha y, \quad x_0 = 0.$$
 (2)

Обычно правая часть уравнения известна с некоторой точностью δ , т.е. известен y_{δ} , для которого $\|y-y_{\delta}\| \leq \delta$. Поэтому вместо схемы (2) приходится рассматривать приближения

$$(E + \alpha^2 A^2) x_{n,\delta} = (E - \alpha A)^2 x_{n-1,\delta} + 2\alpha y_{\delta}, \ x_{0,\delta} = 0.$$
 (3)

Ниже, под сходимостью метода (3) понимается утверждение о том, что приближения (3) сколь угодно близко подходят к точному решению уравнения при достаточно малых δ и $n\delta$ и достаточно больших n.

- 2. Сходимость метода в случае априорного выбора числа итераций.
- **2.1.** Сходимость при точной правой части уравнения. Воспользовавшись интегральным представлением самосопряженного оператора *A* и формулой (2), по индукции получим

$$x-x_n=\int\limits_0^M\lambda^{-1}\left[rac{(1-\alpha\lambda)^2}{1+lpha^2\lambda^2}
ight]^ndE_\lambda y$$
, где $M=\|A\|$, E_λ — спектральная функция оператора A . Разо-

бьем полученный интеграл на два:
$$x-x_n=\int\limits_0^\varepsilon \lambda^{-1} \left[\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2}\right]^n dE_\lambda y + \int\limits_\varepsilon^M \lambda^{-1} \left[\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2}\right]^n dE_\lambda y.$$

Потребуем, чтобы при $\lambda \in (0,M]$ величина $\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2}$ была меньше 1. Это будет при $\alpha>0$. Рас-

смотрим второй из написанных интегралов по норме: при $\alpha > 0$ имеем

$$\left\|\int\limits_{\varepsilon}^{M} \lambda^{-1} \left[\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2} \right]^n dE_{\lambda} y \right\| \leq q^n(\varepsilon) \left\|\int\limits_{\varepsilon}^{M} \lambda^{-1} dE_{\lambda} y \right\| \leq q^n(\varepsilon) \|x\| \to 0, \, n \to \infty \, (\text{здесь})$$

$$\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2}$$
 ≤ $q(\epsilon)$ < 1). Kpome

$$\left\| \int_{0}^{\varepsilon} \lambda^{-1} \left[\frac{(1 - \alpha \lambda)^{2}}{1 + \alpha^{2} \lambda^{2}} \right]^{n} dE_{\lambda} y \right\| \leq \left\| \int_{0}^{\varepsilon} \lambda^{-1} dE_{\lambda} y \right\| = \left\| \int_{0}^{\varepsilon} dE_{\lambda} x \right\| = \|E_{\varepsilon} x\| \to 0, \ \varepsilon \to 0, \ \text{так как } E_{\varepsilon} \text{ сильно стре-}$$

мится к нулю при $\varepsilon \to 0$ в силу свойств спектральной функции. Спедовательно, при $\alpha > 0$ имеем $\|x - x_n\| \to 0$, $n \to \infty$.

Тем самым доказана сходимость метода (2) к точному решению операторного уравнения (1) при точной правой части y.

2.2. Сходимость при приближенной правой части уравнения. Итерационный процесс (3) является сходящимся, если нужным образом выбирать число итераций n в зависимости от уровня погрешности δ . Справедлива

Теорема. Итеративный процесс (3) сходится при $\alpha > 0$, если выбирать число итераций п в зависимости от δ так, чтобы $n\delta \to 0$, $n \to \infty$, $\delta \to 0$.

Доказательство. Рассмотрим разность $x-x_{n,\delta}=(x-x_n)+(x_n-x_{n,\delta})$. По доказанному в подразделе 2.1 $x-x_n\to 0,\ n\to \infty$. Убедимся, что $x_n-x_{n,\delta}$ можно сделать сходящимся к нулю. Имеем

$$x_{n} - x_{n,\delta} = A^{-1} \left[E - (E - \alpha A)^{2n} \left(E + \alpha^{2} A^{2} \right)^{-n} \right] (y - y_{\delta}) = \int_{0}^{M} \lambda^{-1} \left[1 - \frac{(1 - \alpha \lambda)^{2n}}{(1 + \alpha^{2} \lambda^{2})^{n}} \right] dE_{\lambda} (y - y_{\delta}).$$

По индукции нетрудно показать, что $g_n(\lambda) = \lambda^{-1} \left[1 - \frac{(1 - \alpha \lambda)^{2n}}{(1 + \alpha^2 \lambda^2)^n} \right] \le 2n\alpha$. Тогда справедлива

оценка $\|x_n - x_{n,\delta}\| \le 2n\alpha\delta$. Поскольку $\|x - x_{n,\delta}\| \le \|x - x_n\| + \|x_n - x_{n,\delta}\| \le \|x - x_n\| + 2n\alpha\delta$ и, как показано в подразделе 2.1 $\|x - x_n\| \to 0$, $n \to \infty$, то для сходимости метода (3) достаточно, чтобы $n\delta \to 0$, $n \to \infty$, $\delta \to 0$. Теорема доказана.

2.3. Оценка погрешности. Оценить скорость сходимости приближений (3) без дополнительных предположений невозможно, так как неизвестна и может быть сколь угодно малой скорость убывания к нулю $\|x-x_n\|$. Поэтому для оценки скорости сходимости метода будем использовать дополнительную априорную информацию на гладкость точного решения x уравнения (1) — возможность его истокообразного представления, т.е. что $x = A^s z$, s > 0. Тогда имеем $y = A^{s+1}z$ и,

следовательно, получим $x-x_n=\int\limits_0^M\lambda^s\biggl[\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2}\biggr]^n\;dE_{\lambda}z.$ Для оценки $\|x-x_n\|$ найдем максимум

модуля подынтегральной функции $\phi(\lambda) = \lambda^s \left[\frac{(1-\alpha\lambda)^2}{1+\alpha^2\lambda^2} \right]^n$, для которой, в свою очередь, справед-

ливо $\varphi(\lambda) \leq \lambda^s \left(1-\alpha\lambda\right)^{2n}$. Нетрудно показать, что при условии $\alpha>0$ для достаточно больших n справедлива оценка $\max_{[0,M]} \varphi(\lambda) \leq s^s \left(2n\alpha e\right)^{-s}$ и, следовательно, $\|x-x_n\| \leq s^s \left(2n\alpha e\right)^{-s}\|z\|$. Та-

ким образом, общая оценка погрешности итерационной процедуры (3) запишется в виде $\|x-x_{n,\delta}\| \leq \|x-x_{n}\| + \|x_{n}-x_{n,\delta}\| \leq s^{s} (2n\alpha e)^{-s} \|z\| + 2n\alpha\delta$. Для минимизации полученной оценки погрешности вычислим правую часть в точке, в которой производная от нее равна нулю; в результате получим оценку $\|x-x_{n,\delta}\|_{\text{our}} \leq (1+s)e^{-s/(s+1)}\delta^{s/(s+1)} \|z\|^{1/(s+1)}$ и $n_{\text{our}} = s(2\alpha)^{-1}e^{-s/(s+1)}\delta^{-1/(s+1)} \|z\|^{1/(s+1)}$.

Очевидно, что оптимальная оценка погрешности не зависит от параметра α , но от него зависит $n_{\text{опт}}$. Поэтому для уменьшения $n_{\text{опт}}$ и, значит, объема вычислительной работы, следует брать α по возможности большим, удовлетворяющим условию $\alpha>0$ и так, чтобы $n_{\text{опт}}\in N$.

Предложенный метод может быть успешно применён для решения некорректных задач, встречающихся в технике, гравиметрии, спектроскопии, математической экономике.