СТАТИСТИЧЕСКИЙ АНАЛИЗ ПРОГНОЗИРОВАНИЯ НАЛОГОВ

А. Аманмаммедов, 4 курс Научный руководитель — **Д.В. Купрейчик**, ст. преподователь Полесский государственный университет

В условиях развития рыночных отношений наиболее актуальным вопросом становится построения эффективной системы планирования и прогнозирования налогов.

Налоговое планирование можно определить как совокупность плановых действий, направленных на увеличение финансовых ресурсов организации, регулирующих величину и структуру налоговой базы, воздействующих на эффективность управленческих решений и обеспечивающих своевременные расчеты с бюджетом по действующему законодательству.

Налоговое прогнозирование — процесс обоснования на основании использования данных о приоритетах развития налоговой системы потенциальных размеров налоговых доходов в перспективе, путей и сроков реализации задач и целей, определение в системе налоговой и бюджетной политики. [1, с 34].

При планировании и прогнозировании налогов очень часто используются методы: динамического прогнозирования, основанные на изучении тенденций развития показателей, абсолютных, относительных и средних величин; методы экспертного прогнозирования математико-статистические, а в частности корреляционный - регрессионный анализ.

На практическом примере рассмотрим систему прогнозирования налоговых поступлений. Определим ряд факторов влияющих на сумму налогов. К таковым можно отнести такие экономические показатели: индекс цен, уровень процентной ставки рефинансирования ЦБ, уровень безработицы, заработной платы рабочих и служащих, доходов физических и юридических лиц и др.

Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии. [4, с 32]

Основная цель множественной регрессии – построение модели с большим числом факторов, определение при этом влияния каждого из них в отдельности на результат, а также совокупное их воздействие на моделируемый показатель. [3, c 51].

Математическая задача сводится к нахождению аналитического выражения, наилучшим образом описывающего связь факторных признаков с результативным, т.е. к определению функции:

$$\overline{y}_{1,2,...,k} = f(x_1, x_2,..., x_k)$$
.

Выбрать форму связи довольно сложно. Эта задача на практике основывается на априорном теоретическом анализе изучаемого явления и подборе известных типов математических моделей. Различают следующие виды множественной (многофакторной) регрессии: линейная, степенная, показательная, параболическая и гиперболическая. [4, с 35].

В настоящее время одной из самых широко применяемых моделей множественной регрессии является линейная модель. Для того чтобы построить такую модель, необходимо вначале отобрать факторы, которые оказывают наибольшее влияние на результирующий показатель.

Рассмотрим это на конкретном примере, данные возьмём из бухгалтерской отчетности СП «ДинамоПрограммТекстиль» ООО за последние 7 лет.

Y	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
688	8657	8577	207	22	1,08	408	451	10284
726	8953	8746	529	192	1,07	271	487	10736
758	8832	8931	653	1171	1,12	323	503	11382
800	11132	10320	812	211	1,13	580	516	11852
706	10468	9454	1024	-102	1,1	350	1062	12121
769	10666	11049	-383	-21	1,1	369	1169	12163
1291	18704	15838	2866	-2588	2,09	649	1070	15249

где: У – Общая сумма налогов;

XI – выручка от реализации товаров, продукции, работ, услуг;

X2 – себестоимость реализованных товаров, продукции, работ, услуг;

X3 – прибыль (убыток) от реализации товаров, продукции, работ, услуг;

X4 – сальдо от операционных и внереализационных доходов и расходов;

X5 – индекс инфляции;

Х6 – средняя стоимость незавершенного производства;

X7 – средняя стоимость готовый продукции;

Х8 – средняя стоимость капитала.

Находим коэффициент корреляции каждого фактора с результатом выбираем наиболее тесные.

r_{yx_1}	r_{yx2}	r_{yx3}	$r_{yx 4}$	$r_{yx 5}$	$r_{yx 6}$	r_{yx7}	$r_{yx 8}$
0,974	0,944	0,873	-0,892	0,990	0,772	0,426	0,929

После данного этапа производим отбор факторов значительно влияющих на результат. Таковыми выступили $X_1, X_2 X_4 X_5 X_8$. Формируем новое поле данных.

Y	X_1	X_2	X_3	X_4	X_5
688	8657	8577	22	1,08	10284
726	8953	8746	192	1,07	10736
758	8832	8931	1171	1,12	11382
800	11132	10320	211	1,13	11852
706	10468	9454	-102	1,10	12121
769	10666	11049	-21	1,10	12163
1291	18704	15838	-2588	2,09	15249

Y — Общая сумма налогов;

XI – выручка от реализации товаров, продукции, работ, услуг;

X2 – себестоимость реализованных товаров, продукции, работ, услуг;

X3 – сальдо от операционных и внереализационных доходов и расходов;

X4 — индекс инфляции;

X5 – средняя стоимость капитала.

Далее для составление уравнений множественной регрессии используем программу Excel, с помощью этой программы определяем значения переменных и тесноту связи между факторными признаками и результативным признаком, т.е. находим коэффициент множественной корреляции и детерминации т.е.

Показатели	Коэффициенты
<i>Y</i> -пересечение	108,540
Переменная Х1	0,028
Переменная Х2	0,028
Переменная ХЗ	0,072
Переменная Х4	474
Переменная Х5	-0,038

$$R=0.998$$
 - коэффициент множественной корреляции $R^2=(0.998)^2=0.996$ - коэффициент детерминации.

Из таблицы следует, что уравнение регрессии имеет вид

$$\overline{Y}_{1,2,\ldots,k} = 108,540 + 0,028 x_1 + 0,028 x_2 + 0,072 x_3 + 474 x_4 - 0,038 x_5$$

В заключение проведенного анализа получено уравнение регрессии, которое может быть применено для планирования и прогнозирования налоговых платежей в случае моделирования конкретных условий хозяйствования организации. Такие модели можно широко использовать при

разработке бизнес-планов инвестиционных проектов и оценке бюджетной эффективности предлагаемых бизнес идей.

Следует отметить, что построенная регрессионная модель уникально для анализа потенциальных субъектов хозяйствование и оценки их будущего успеха. Для построения более точной модели на макроуровне необходимо собрать как можно больше статистического материала.

Список использованных источников

- 1. Саакян, Р. А. О некоторых аспектах налогового прогнозирования и планирования / Налоговый вестник. 2007. № 12. с. 33-35.
- 2. Седелев Б.В. Регрессионные модели и методы оценки параметров и структуры экономических процессов: Учебное пособие / Под редакцией В.В. Харитонова. М.: МИФИ, 2009. 53- 67 с.
- 3. Сост. ЮТ. Мансурова, Е.Г. Эконометрический анализ: Учебное пособие по дисциплине «Эконометрика» / Уфимск. гос. авиац. техн. ун-т; Мухтарова. Уфа, 2011. 50-69с.
- 4. Шанченко Н. И. Эконометрика: лабораторный практикум : учебное пособие / Ульяновск : УлГТУ, 2011 32 37 с