УДК 513.82

ГЕОДЕЗИЧЕСКИЕ ЛИНИИ КАНОНИЧЕСКОЙ СВЯЗНОСТИ В РЕДУКТИВНЫХ ОДНОРОДНЫХ ПРОСТРАНСТВАХ

Е.Е. Гурская, студент,

А.А. Юдов, кандидат физико-математических наук, доцент, Брестский государственный университет имени А.С. Пушкина, algebry@brsu.brest.by

Рассмотрим четырехмерное псевдоевклидово пространство нулевой сигнатуры - пространство 2R4 и группу

Ли G движений этого пространства. Алгебра Ли \overline{G} группы Ли G имеет базис {i1, i2, ..., i10}, где i1=E21; i2=E31; i3=E41; i4=E51; i5=E23-E32; i6=E24+E42; i7=E25+E52; i8=E34+E43; i9=E35+E53; i10=E45-E54; Eij – (5×5)-матрица, у которой в і-строке и ј-столбце стоит I, а остальные 0.

Представим пространство 2R4 в виде однородного ϕ –пространства В.И. Ведерникова.

Рассмотрим следующий эндоморфизм ϕ группы G:

$$\varphi: G \to G: \begin{pmatrix} 1 & 0 \\ t & A \end{pmatrix} \to \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}.$$

При помощи эндоморфизма ϕ построим ϕ – пространство X по правилу:

$$X = \left\{ a \varphi \left(a^{-1} \right) \middle| a \in G \right\}$$

В этом множестве X транзитивно действует группа G :

$$(G,X) \to X : (g,a\varphi(a^{-1})) \to g \ a\varphi(a^{-1})\varphi(g^{-1})$$

При этом, X становится однородным пространством со структурной группой G . Непосредственным вычислением получаем, что множество X состоит из элементов вида:

Группа стационарности элемента. О=Е ∈ X, совпадает с множеством все

 Φ — неподвижных элементов группы G , т. е. с множеством: где A \in H.

Имеет место

Теорема: G — пространства $2R4\ X$, G/H изоморфны, причём G — изоморфизм задаётся отображениями:

$$\delta, \psi : \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \xrightarrow{\delta} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ x_1 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 1 & 0 & 0 \\ x_3 & 0 & 0 & 1 & 0 \\ x_4 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\psi} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ x_1 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 1 & 0 & 0 \\ x_3 & 0 & 0 & 1 & 0 \\ x_4 & 0 & 0 & 0 & 1 \end{pmatrix} H.$$

Рассмотрим для модели ϕ -пространства X формулы канонической проекции: $\pi:G \to X \equiv G/H: a \to aH$,

$$\pi:G\to G/H\equiv X:\begin{pmatrix}1&0\\t&A\end{pmatrix}\to\begin{pmatrix}1&0\\t&A\end{pmatrix}H=\begin{pmatrix}1&0\\t&E\end{pmatrix}H\equiv\begin{pmatrix}1&0\\t&E\end{pmatrix}\in X$$

Среди однородных редуктивных пространств с двумерными группами стационарности флаговый образ стационарности имеют группы G14={i5,i10} и G15={i6,i9}: (R2, R0) и (1R2, R0) соответственно. Будем задавать 2R4

 ϕ -пространство. Тогда евклидова плоскость, точка R0 (начало координат) и псевдоевклидова плоскость будут задаваться соответственно матрицами:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \lambda & 1 & 0 & 0 & 0 \\ \mu & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{: \, R0} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{: \, 1R2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \lambda & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \mu & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{: \, 1R2}$$

Рассмотрим редуктивные однородные пространства G/G14, G/G15. Редуктивые дополнения для них имеют соответственно вид: $\{i1, i2, i3, i4, i6, i7, i8, i9\}$; $\{i1, i2, i3, i4, i5, i7, i8, i10\}$.

Однопараметрическая группа Ли, соответствующая оператору ік (к = 1, 2, 3, ..., 10) состоит из элементов

вида: et
$$\frac{t^2 i_k^2}{2!} + \frac{t^3 i_k^3}{3!} + \dots$$

$$\begin{bmatrix} \cos t & \sin t & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \cos t & \sin t & 0 & 0 \\ -\sin t & \cos t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{: \text{e-t}} \begin{bmatrix} \cos t & -\sin t & 0 & 0 \\ \sin t & \cos t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Произведя соответствующие вычисления, найдем, что геодезические линии, соответствующие оператору i5, имеют вид:

1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0_	_0	0_	_0_	_1_	00	_0_	0	_0_	0
0	0	0	$\bar{0}^{-}$	0	1	$\bar{0}$	0	0	0
0	0	0	0	0	$\lambda \cos t$	1	0	0	0
0	0	0	0	0	$-\lambda \sin t$	0	1	0	0
0	0	0	0	0	μ	0	0	1	0
۱۸	Ω	Ω	Λ	Λ	. n	Λ	Ω	Λ	1

Результаты исследований данной работы могут быть использованы при решении прикладных задач, возникающих в физике, технике, экономике.