ТРЁХШАГОВЫЕ МЕТОДЫ РЕШЕҢИЯ НЕЛИНЕЙНЫХ СИСТЕМ

Л. А. Савчук, студент, М. С. Коледа студент,

В.М. Мадорский, кандидат физико-математических наук, доцент, Брестский государственный университет им. А. С. Пушкина, madorsky@tut.by

Для решения нелинейных систем вида:

$$f(x) = 0 \quad f(D \in \mathbb{R}^n \to \mathbb{R}^n) \quad f \in C_D^{(2)}$$

применяются как одношаговые, так и многошаговые итерационные методы.

В данной работе для решения модельной системы вида:

$$\begin{cases} 2x_1 + x_2 + \dots + x_{n-2} + x_{n-1} + x_n = n+1, \\ x_1 + 2x_2 + \dots + x_{n-2} + x_{n-1} + x_n = n+1, \\ \dots & \dots & \dots \\ x_1 + x_2 + \dots + 2x_{n-2} + x_{n-1} + x_n = n+1, \\ x_1x_2 \dots x_{n-2}x_{n-1}x_n = 1, \\ \sin^3 x_1 + \cos^2 x_n = \sin^3 1 + \cos^2 1. \end{cases}$$

(2) применяется ряд трехшаговых методов.

Шаг 1: решается система линейных алгебраических уравнений:

(3)
$$f'(x_n)\Delta x_n = -f(x_n), \ n = 0, 1, 2, \dots$$

где $f(x_n)$ - матрица Якоби, Δx_n - искомый вектор.

Шаг 2: вносится поправка в вектор $\frac{X_n}{x}$:

(4)
$$x_{n+1} = x_n + \sqrt{\beta_n} \Delta x_n, \ n = 0, 1, 2, ..., \ \beta_0 \in [10^{-3}, 10^{-1}]$$

Шаг 3: проверяем условие:

(5)
$$||f(x_{n+1})|| < \varepsilon \int_{1}^{\infty} ||f(x)|| = \sqrt{\frac{1}{n} \sum_{i=1}^{n} f_i^2(x)}$$

Если условие (5) выполняется, то x_{n-1} - приближенное решение системы (2). В противном случае производится пересчет β_{n+1} , для этого мы проверяем условие: если $\|f(x_{n+1})\| < \|f(x_n)\|$, то $\beta_{n+1} = 1$, иначе β_{n-1} находится по формулам, которые для каждого из трех методов свои, а именно:

Метод 1

$$\beta_{n+1} = \min\left(1, \frac{\gamma_n \|f(x_{n-1})\|}{\beta_n \|f(x_{n+1})\|}\right), \ \gamma_{n+1} = \frac{\gamma_n \|f(x_{n-1})\|}{\|f(x_{n+2})\|}, \ \gamma_0 = \beta_0^2$$

Метод 2

$$\beta_{n+1} = \min\left(1, \frac{\gamma_n \|f(x_{n-1})\|}{\beta_n \|f(x_{n+1})\|}\right), \ \gamma_{n+1} = \frac{\gamma_n \|f(x_{n-1})\| \cdot \|f(x_n)\|}{\|f(x_{n+1})\| \cdot \|f(x_{n+2})\|}, \ \gamma_0 = \beta_0^2 \frac{\|f(x_0)\|}{\|f(x_1)\|}$$

Метол 3

$$\beta_{n+1} = \min\left(1, \frac{\gamma_n \|f(x_{n-1})\|}{\beta_n \|f(x_{n+1})\|}\right), \ \gamma_{n+1} = \frac{\gamma_n \|f(x_{n-1})\| \cdot \|f(x_{n+1})\|}{\|f(x_n)\| \cdot \|f(x_{n+2})\|}, \ \gamma_0 = \beta_0^2 \frac{\|f(x_0)\|}{\|f(x_1)\|}$$

И переходим к шагу 1, причем $||f(x_{-1})|| = ||f(x_0)||$

Теорема. Пусть в интересующей нас области D оператор $f \in C_D^{(2)}$, $\|(f'(x))^{-1}\| \le B$, $\|f''(x)\| \le K$, $x \in D$, $\varepsilon_0 = 0.5KB^2\beta_0 \|f(x_0)\| < 1$. Тогда итерационный процесс шаг 1- шаг 3 со сверхлинейной (локально с квадратичной) скоростью сходится к x^* - решению уравнения (1), если такое решение в D существует.

Доказательство теоремы для Метода 3 состоит из следующих этапов: вначале доказывается релаксационность процесса, то есть $\|f(x_{n+1})\| \le q_n \|f(x_n)\|$, $q_n < 1, n = 0,1,2...$ Далее доказываем, что все $\varepsilon_n = 0.5 KB^2 \beta_n \|f(x_n)\| < 1$. Нетрудно показать, что последовательность q_n монотонно убывает к нулю, последовательность итерационных параметров β_n монотонно возрастает к единице.

Для доказательства того, что β_n достигает единицы, берем предел:

$$\lim_{n\to\infty} \beta_n = \lim_{n\to\infty} \frac{\gamma_{n-1} \| f(x_{n-2}) \|}{\beta_{n-1} \| f(x_n) \|} = \lim_{n\to\infty} \frac{\gamma_{n-2} \| f(x_{n-3}) \| \cdot \| f(x_{n-1}) \| \cdot \| f(x_{n-2}) \|}{\beta_{n-1} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\gamma_{n-2} \| f(x_{n-3}) \| \cdot \| f(x_{n-1}) \|}{\beta_{n-1} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\gamma_{n-2} \| f(x_{n-3}) \| \cdot \| f(x_{n-1}) \|}{\beta_{n-1} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\gamma_{n-2} \| f(x_{n-1}) \|}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_{n-1}) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_{n-1}) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_{n-1}) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2} = \lim_{n\to\infty} \frac{\beta_{n-2} \| f(x_n) \|^2}{\gamma_{n-2} \| f(x_n) \|^2}$$

Так как $\beta_n \uparrow 1$, а $q_n \to 0$ при $n \to \infty$, то на некотором шаге $n_0 = \beta_{n_0}$ становится равным единице. Таким образом, процесс входит в режим метода Ньютона с характерной для последнего квадратичной скоростью сходимости. Доказательство для других методов, рассматриваемых выше, проводится аналогично.

Вычислительный эксперимент на модельной системе (2) проводился при следующих начальных данных: точность $\varepsilon = 10^{-10}$, $\beta_0 = 10^{-2}$, начальные приближения берутся случайным образом из отрезка $\begin{bmatrix} -1,1 \end{bmatrix}$. Результаты эксперимента оформлены в виде таблицы:

	Сколько раз при 100 экспериментах при определённом N метод расходится.										
	N=5	N=6	N=7	N=8	N=9	N=1 0	N=11	N=12	N=1 3	N=14	N=15
Метод 1	1	2	1	2	4	21	24	66	66	80	92
Метод 2	0	5	2	16	14	48	61	90	91	96	99
Метод 3	0	0	ı	7	1	3	2	5	7	9	4

из которой видно, что из рассмотренных трех методов наиболее эффективным как по скорости сходимости к решению, так и по широте области сходимости является Метод 3, далее идет Метод 2 и Метод 1.