УДК 517.983

О СХОДИМОСТИ МЕТОДА ИТЕРАЦИЙ НЕЯВНОГО ТИПА РЕШЕНИЯ НЕКОРРЕКТНЫХ ЗАДАЧ В СЛУЧАЕ НЕЕДИНСТВЕННОГО РЕШЕНИЯ

П.А. Шпак, студент,

В.Ф. Савчук, заведующий кафедрой информатики и прикладной математики, кандидат физикоматематических наук, доцент.

Брестский государственный университет им. А.С. Пушкина, kaa@brsu.brest.by

Будем рассматривать в гильбертовом пространстве Н уравнение

$$Ax = y_{(1)}$$

с ограниченным положительным самосопряжённым оператором A, для которого нуль является собственным значением оператора A, т.е. задача (1) имеет неединственное решение. Предположим, что $y \in R(A)$, т.е. при точной правой части y уравнения решение (неединственное) задачи (1) существует. Для его отыскания используем неявный итерационный метод

$$(E + \alpha A^3)x_{n+1} = (E - \alpha A^3)x_n + 2\alpha A^2y, x_0 = 0.$$
 (2)

Обозначим через $N(A) = \left\{x \in H \middle| Ax = 0\right\}$, $M(A)_{-}$ ортогональное дополнение ядра $N(A)_{-}$ до H. Пусть $P(A)x_{-}$ проекция $x \in H_{-}$ на $N(A)_{+}$ а $\Pi(A)x_{-}$ проекция $x \in H_{-}$ на $M(A)_{+}$. Справедлива

Теорема 1. Пусть $A \geq 0, y \in H, \alpha > 0$, тогда для итерационного метода (2) верны следующие утверждения:

$$Ax_n \to \Pi(A)y, ||Ax_n - y|| \to J(A, y) = \inf_{x \in H} ||Ax - y||;$$

б) итерационный метод (2) сходится тогда и только тогда, когда уравнение $Ax = \Pi(A)y$ разрешимо. В последнем случае $x_n \to P(A)x_0 + x^*$, где x^* – минимальное решение. Локазательство.

 $Ax_n - \Pi(A)y = v_n$, $v_n \in M(A)$, тогда $(E + \alpha A^3)v_n = (E - \alpha A^3)v_{n-1}$. Отсюда $v_n = (E + \alpha A^3)^{-1}(E - \alpha A^3)v_{n-1}$, следовательно, $v_n = (E + \alpha A^3)^{-n}(E - \alpha A^3)^n v_0$.

Имеем $A \ge 0$ и A — положительно определён в M(A) , т.е. (Ax,x) > 0 $\forall x \in M(A)$. Так как $\alpha > 0$, то $\|(E + \alpha A^3)^{-1}(E - \alpha A^3)\| \le 1$, поэтому справедлива целочка неравенств

$$||v_n|| = |(E + \alpha A^3)^{-n} (E - \alpha A^3)^n v_0|| = ||\int_0^{|A|} \left(\frac{1 - \alpha \lambda^3}{1 + \alpha \lambda^3}\right)^n dE_{\lambda} v_0|| \le ||\int_0^{\varepsilon_0} \left(\frac{1 - \alpha \lambda^3}{1 + \alpha \lambda^3}\right)^n dE_{\lambda} v_0|| + ||\nabla A^3||^{\frac{1}{2}} ||\nabla A^3||^{\frac{1}{2}} dE_{\lambda} v_0|| + ||\nabla A^3||^{\frac{1}{2}} ||\nabla A^3||^{\frac{1}{2}} dE_{\lambda} v_0|| + ||\nabla A^3||^{\frac{1}{2}} ||\nabla A^3||^{\frac{1}{2}} dE_{\lambda} v_0|| + ||\nabla A^3||^{\frac{1}{2}} dE_{\lambda} v_0|| +$$

$$+ \left\| \int\limits_{\epsilon_0}^{M} \left(\frac{1-\alpha\lambda^3}{1+\alpha\lambda^3} \right)^n dE_{\lambda} v_0 \right\| \leq \left\| \int\limits_{0}^{\epsilon_0} dE_{\lambda} v_0 \right\| + q^n(\epsilon_0) \left\| \int\limits_{\epsilon_0}^{|A|} dE_{\lambda} v_0 \right\| = \left\| E_{\epsilon_0} v_0 \right\| + q^n(\epsilon_0) \left\| v_0 \right\| < \epsilon$$

$$\frac{\left|\frac{1-\alpha\lambda^3}{1+\alpha\lambda^3}\right|}{Ax_n\to\Pi(A)y} \leq q(\epsilon_0) < 1$$
 при $\lambda\in\left[\epsilon_0,\|A\|\right]$ Следовательно, $\nu_n\to0$, куда $Ax_n\to\Pi(A)y$ и $\Pi(A)y\in A(H)$. Отсюда

откуда $||Ax_n - y|| \to ||\Pi(A)y - y|| = ||P(A)y|| = J(A, y)$. Итак, утверждение а) доказано. Докажем б).

Пусть процесс (2) сходится. Покажем, что уравнение $Ax = \Pi(A)y$ разрешимо. Из сходимости $\{x_n\} \in H$ к $z \in H$ и из а) следует, что $Ax_n \to Az = \Pi(A)y$, следовательно, $\Pi(A)y \in A(H)$ и уравнение $\Pi(A)y = Ax$ разрешимо.

Пусть теперь $\Pi(A)y \in A(H)$ (уравнение $\Pi(A)y = Ax$ разрешимо), следовательно, $\Pi(A)y = Ax^*$, где x^* – минимальное решение уравнения Ax = y (оно единственно в M(A)). Тогда (2) примет вид

$$(E + \alpha A^3)x_n = (E - \alpha A^3)x_{n-1} + 2\alpha A^2 \Pi(A)y = (E - \alpha A^3)x_{n-1} + 2\alpha A^3 x^* =$$

$$= (E + \alpha A^3)x_{n-1} - 2\alpha A^3 x_{n-1} + 2\alpha A^3 x^* = (E + \alpha A^3)x_{n-1} + 2\alpha A^3 (x^* - x_{n-1}).$$

$$x_n = x_{n-1} + 2\alpha A^3 (E + \alpha A^3)^{-1} (x^* - x_{n-1}).$$
 Последнее неравенство разобъём на два: $P(A)x_n = P(A)x_{n-1} + 2\alpha (E + \alpha A^3)^{-1} A^3 P(A)(x^* - x_{n-1}) = P(A)x_{n-1} = P(A)x_0$

 $P(A)x_n = P(A)x_{n-1} + 2\alpha(E + \alpha A^3)^{-1}A^3P(A)(x^* - x_{n-1}) = P(A)x_{n-1} = P(A)x_n$ $\Pi(A)x_n = \Pi(A)x_{n-1} + 2\alpha(E + \alpha A^3)^{-1}A^3\Pi(A)(x^* - x_{n-1}) =$

$$\Pi(A)x_n = \Pi(A)x_{n-1} + 2\alpha(E + \alpha A^3)^{-1}A^3\Pi(A)(x^* - x_{n-1}) =$$

$$= \Pi(A)x_{n-1} + 2\alpha(E + \alpha A^3)^{-1}A^3\left[\Pi(A)x^* - \Pi(A)x_{n-1}\right] =$$

 $= \Pi(A)x_{n-1} + 2\alpha(E + \alpha A^3)^{-1}A^3 \left[x^* - \Pi(A)x_{n-1}\right],$

 $x^* \in M(A)$. Обозначим $w_n = \Pi(A)x_n - x^*$, тогда равенства

 $\Pi(A)x_n - x^* = \Pi(A)x_{n-1} - x^* + 2\alpha(E + \alpha A^3)^{-1}A^3 \left[x^* - \Pi(A)x_{n-1}\right]_{\text{получим}}$ $w_n = w_{n-1} - 2\alpha(E + \alpha A^3)^{-1}A^3w_{n-1} = (E + \alpha A^3)^{-1}(E - \alpha A^3)^{-1}w_{n-1}$

и, аналогично v_n , можно показать, что $w_n \to 0, n \to \infty$. Таким образом. $\Pi(A)x_n \to x^*$. Отсюда $x_n = P(A)x_n + \Pi(A)x_n \rightarrow P(A)x_0 + x^*$ Замечание 1. Так как у нас $x_0 = 0$, то $x_n \to x$, т.е. итерационный процесс (2) сходится к нормальному решению, т.е. к решению с минимальной нормой,