ФИЗИОЛОГИЧЕСКОЕ СОСТОЯНИЕ ВОДОРОСЛЕЙ И СООТНОШЕНИЕ В ИХ КЛЕТКАХ РАЗЛИЧНЫХ ПИГМЕНТОВ

Н.П. ДМИТРОВИЧ, Т.В. КОЗЛОВА

Полесский государственный университет г. Пинск, Республика Беларусь, natali—rigo@rambler.ru

Водоросли – богатейший источник белковых веществ, витаминов, микроэлементов и других биологически активных веществ. Они участвуют в процессах формирования гидробиоценозов, влияют на органолептические показатели воды и в целом на её качество. Основным достоинством водорослей является физиолого—биохимическое разнообразие их пигментов и лабильность их химического состава, позволяющие осуществлять управляемый биосинтез ценных химических природных соединений [1].

Данные о составе, концентрации и соотношении растительных пигментов в клетках водорослей широко используются гидробиологами при различных аспектах изучения фитопланктона [2]. Периодам интенсивного развития водорослей соответствует увеличение концентрации их пигментов. Это даёт возможность судить о продуктивности фитопланктона по концентрации хлорофилла в водорослях. Использование такого метода значительно упрощает определение продуктивности фитопланктона по биомассе, подсчёт которой занимает много времени [3].

Пигментный состав планктонных водорослей характеризуется большим разнообразием. Помимо обязательного для всех хлорофилла a, по концентрации которого можно определять общую биомассу и продукцию фитопланктона, у них имеется большое число других пигментов, из которых многие присущи только определенному виду водорослей. К ним относится хлорофилл c и фукоксантин диатомовых и перидиниевых, билихромопротеиды синезелёных и фикобилины красных водорослей.

Для того чтобы определить количество хлорофилла внутриклеточный хлорофилл сначала должен быть извлечён. Так как хлорофилл обладает высокой реакционной способностью, показатель концентрации определенного вида хлорофилла в водорослях зависит от образования продуктов распада. Продукты распада хлорофилла образуются, когда их молекулы подвергаются воздействию избыточного света, кислорода воздуха, высоких температур и кислот или оснований. Традиционный метод для количественного определения хлорофилла и других пигментов — это приготовление экстракта для спектрофотометрического анализа. Концентрацию различных соединений хлорофилла и других пигментов определяют путем измерения оптической плотности образца при конкретной длине волны и используют стандартные уравнения для расчета концентрации пигментов. Однако было обнаружено, что этот метод иногда может давать неточные результаты, т.к. как поглощение и излучение полос других пигментов пересекаются с хлорофиллом [4].

Также немаловажное значение для определения физиологического состояния клеток фитопланктона имеет определение соотношения общих каротиноидов к хлорофиллу a ($C_{\rm k}/C_{\rm x,n}$) [5, 6]. Каротиноиды представляют собой более стабильный компонент пигментной системы, чем хлорофилл a. Усиление в клетках процессов каротиногенеза или разрушения хлорофилла свидетельствует о замедлении уровня метаболизма и ухудшении физиологического состояния водорослей [2], поэтому при старении популяций фитопланктона и при неблагоприятных воздействиях на них факторов среды, способствующих деструкции хлорофилла a, величина отношения ($C_{\rm k}/C_{\rm x,n}$) возрастает. Отношение $C_{\rm k}/C_{\rm x,n}$ при разных условиях может колебаться в достаточно широких пределах.

Однако среднее его значение для отдельных видов морского и пресноводного фитопланктона варьирует слабо и находится в основном в границах 0.28-0.40 [7]. Высокие средние величины отношения $C_{\kappa}/C_{\kappa\pi}$ (около 1) характерны для фитопланктона прудов [8], мелководных водохранилищ и озёр [9]. Изучение отношения $C_{\kappa}/C_{\kappa\pi}$ очень полезно при разработке показателей эффективности функционирования фитопланктона различного видового состава. Как правило, низкие величины рассматриваемого соотношения соответствуют диатомовому фитопланктону, а высокие — преимущественно фитопланктону из динофлагеллат и синезеленых [5].

Настоящее исследование проводилось с целью анализа физиологического состояния разных популяций водорослей. Все они имели различный жизненный цикл, уровень метаболизма и требования к окружающей среде. В эксперименте были исследованы 14 видов и/или штаммов микроводорослей. Культивирование производили в двухлитровых колончатых биореакторах объемом 2 дм³ при постоянном барботаже. Для исследований использовали лучшую из трёх сред, определенную на предыдущем этапе выращивания во встряхиваемых колбах.

На протяжении всего периода культивирования измерялась концентрация пигментов в водорослях спектрофотометрическим методом. Для этого отбирали 1 г суспензии из каждого биореактора и измеряли концентрацию пигментов по методу Dere и др. с формулами для метанола как растворителя [10]:

```
Chl a = 15,65*A_{666} - 7,340*A_{653};
Chl b = 27,05*A_{653} - 11,21*A_{666};
Car = (1000*A_{470} - 2,860*Chl a - 129,2*Chl b)/245;
```

0,1609

0,0042

0,1369

0,2125

0,0765

0,4374

Mur

Bra

Sti

Pse

Des

Chl

где Chl a – концентрация хлорофилла a, Chl b – концентрация хлорофилла b, Car – концентрация каротиноидов, A_{662} – абсорбция при длине волны 645 нм, A_{470} – абсорбция при длине волны 470 нм [10].

Для определения жёлто—зелёного индекса пробы отбирали в конце процесса культивирования перед определением общего выхода биомассы (урожайности водоросли). Данные приведены в таблице 1.

,	1		
Названия видов и штаммов водорослей	Содержание хлорофилла <i>а</i> , мкг/1гсм (грамм сырой массы)	Содержание каротиноидов, мкг/1гсм (грамм сырой массы)	Значение жёлто— зелёного индекса, C_{κ}/C_{κ}
Coc	0,0083	0,0056	0,6719
14–7	0,1765	0,1277	0,7236
Psd	0,1083	0,1113	1,0274
S-20	0,0042	0,0120	2,8822
14–10	0,0240	0,0403	1,6805
Chr	0,0323	0,0744	2,3062
S-25	0,0244	0,0561	2,2933
15–6	0.0978	0.0997	1.0201

0,1420

0,0099

0,0834

0,1534

0,0567

0,2754

0.8829

2,3910

0,6091

0,7222

0,7416

0,6297

Таблица 1 – Общее содержание пигментов и значение жёлто-зелёного индекса

Отношения оптических плотностей экстрактов, косвенно отражающие соотношения концентраций пигментов, могут служить показателями физиологического состояния, структуры и разнообразия фитопланктонного сообщества. В данном исследовании был использован индекс E_{470}/E_{666} , который характеризует соотношение общих каротиноидов и хлорофилла a. Принято считать, что повышение данного индекса свидетельствует об ухудшении физиологического состояния и «старения» фитопланктона, а также увеличении пигментного разнообразия в клетках водорослей [11].

При анализе результатов эксперимента было выявлена зависимость между интенсивностью процесса накопления каротиноидов и физиологическим состоянием микроводорослей в конце

процесса культивирования. Для этого значение жёлто-зелёного индекса, приведенного выше, сравнивали с содержанием каротиноидов, исследованных двумя методами: спектрофотометрическим методом и методом жидкостной хроматографии высокого разрешения (давления). При сравнении результатов опыта рассчитывали коэффициент корреляции. Полученные результаты представлены в таблице 2.

Таблица 2 – Содержание каротиноидов в зависимости от физиологического состояния микроводорослей

Hoopeyyya py	Значение жёлто— зелёного индекса, $C_{\kappa}/C_{\kappa,n}$	Содержание каротиноидов, мг/1г сух. биомассы		
Названия ви- дов и штаммов водорослей		Спектрофотометрический метод	Метод жидкостной хроматографии высокого разрешения	
Coc	0,6719	0,3460	1,6725	
14–7	0,7236	2,0895	6,3361	
Psd	1,0274	6,6949	41,9907	
S-20	2,8822	0,2689	0,6952	
14–10	1,6805	0,6887	4,4641	
Chr	2,3062	1,0805	7,0824	
S-25	2,2933	1,7104	1,7975	
15–6	1,0201	7,5434	76,4425	
Mur	0,8829	5,0125	32,9381	
Bra	2,3910	4,5990	15,9108	
Sti	0,6091	8,4472	41,3261	
Pse	0,7222	6,6672	35,1461	
Des	0,7416	9,3555	26,6813	
Chl	0,6297	9,4746	64,8694	

Рассчитанные коэффициенты корреляции показали, что зависимость между содержанием каротиноидов и значением жёлто—зелёного индекса была обратно пропорциональной, и их значения составили: \mathbf{r} =-0,542 для метода жидкостной хроматографии высокого разрешения и \mathbf{r} =-0,601 для спектрофотометрического метода.

Таким образом, анализ проведенных исследований показал наличие зависимости между физиологическим состоянием водорослей в конце процесса их культивирования и уровнем накопления в них каротиноидов. Значение жёлто—зелёного индекса возрастает при старении популяции водорослей или их пребывании в экстремальных условиях.

ЛИТЕРАТУРА

- 1. Георгицина, К.А. Водоросли продуценты биоорганических соединений / К.А. Георгицина // Pontus Euxinus 2011: тезисы VII Междунар. науч.—практ. конф. по проблемам водных экосистем, посвящённой 140—летию Института биологии южных морей Национальной академии наук Украины, Севастополь, 24–27 мая 2011 г. / ЭКОСИ–Гидрофизика, 2011. С. 66–67.
- 2. Kozlov, A. Influence of the fulfilled beer yeast on the level of benthos in maturing ponds at the beginning of piscicultural season / A. Kozlov // Pond Aquaculture in Central and Eastern Europe in the 21stCentury: Handbook of abstracts. Vodnany, Czech Repub, May 2–4. 2001. P. 16.
- 3. Джулай, А.А. Содержание хлорофилла А и поглощение света фитопланктоном в Севастопольской бухте (2009–2010 гг.) / А.А. Джулай // Pontus Euxinus 2011: тезисы VII Междунар. науч.—практ. конф. по проблемам водных экосистем, посвящённой 140—летию Института биологии южных морей Национальной академии наук Украины, Севастополь, 24–27 мая 2011 г. / ЭКОСИ—Гидрофизика, 2011. С. 97–98.
- 4. Hosikian, A. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects / A. Hosikian, S. Lim, R. Halim, M. K. Danquah // International journal of chemical engeneering. -2010.-P.1-11.
- 5. Догадина, Т.В. Десмидиевые водоросли сточных вод / Т.В. Догадина // Науч. докл. высшей школы. Сер. Биол. науки. 1972 б. № 7. С. 76–81.
- 6. Елизарова, В.А. Содержание фотосинтетических пигментов в фитопланктоне водоёмов разного типа: автореф. дис. канд. биол. наук: 03.00.18 / В.А. Елизарова; Институт биологии внутренних вод АН СССР. Москва, 1975. 24 с.
- 7. Минаев, О.В. Выращивание двухлеток судака в условиях карповых хозяйств II зоны рыбоводства /О.В. Минаев // Молодёжь в науке 2011: материалы Междунар. науч. конф. молодых учёных, Минск, 25–29 ап-

реля 2011 г. / Нац. акад. наук Беларуси. Совет молодых учёных НАН Беларуси; редкол. В.Г. Гусаков (гл. ред.), И.М. Богдевич [и др.]. – Минск, 2012. – С. 106–112.

8. Столович, В.Н. Комбинированные (интегрированные) рыбоводные хозяйства / В.Н. Столович // Аква-

культура. Ресурсосбережение в товарном рыбоводстве. Интегрированное рыбоводство. – Минск, 1999. – С.

57-75 9. Елизарова, В.А Содержание фотосинтетических пигментов в единице биомассы фитопланктона / В.А.

Елизарова // Труды ин-та биол. внутр. вод. – Л., 1974. – Вып. 28 (31). – С. 46-64.

10. Dere S., Guenes T., Sivaci R. Spectrophotometric determination of chlorophyll – A, B and total carotenoid

11. Бульон, В.В. Соотношение между первичной продукцией и рыбопродуктивностью водоёмов / В.В.

contents of some algae species using different solvents. Tr. J. of Botany. 22: 13-17 (1998)

Бульон, Г.Г. Винберг // Основы изучения водных экосистем. – Л., 1981. – С. 5–10.