Министерство образования Республики Беларусь УО «Полесский государственный университет»

С.А. КЛЕЩЕВА

ОСНОВЫ КОММЕРЧЕСКИХ И ФИНАНСОВЫХ РАСЧЁТОВ

Практикум

для студентов экономических специальностей и слушателей ФПК и ПК

Пинск ПолесГУ 2015 УДК 346.62(076.5) ББК 65.262я73 К48

Рецензенты: кандидат экономических наук М.И. Лисовский кандидат физико-математических наук П.А. Павлов

У т в е р ж д е н о научно-методическим советом ПолесГУ

Клещева, С.А.

К48 Основы коммерческих и финансовых расчётов: практикум / С.А. Клещева. – Пинск: ПолесГУ, 2015. – 53с.

ISBN 978-985-516-348-1

Основное назначение практикума — помочь слушателям научиться применять методы финансовых вычислений для расчетов простых и сложных процентов, анализировать и осмысливать практические финансовые задачи, систематизировать свои знания в этой области.

Практикум содержит методические указания по курсу финансовых вычислений, примеры решения задач, задачи для самостоятельного решения, приложения.

Настоящий практикум предназначен для студентов экономических специальностей и слушателей ФПК и ПК.

УДК 346.62(076.5) ББК 65.262я73

ISBN 978-985-516-348-1

© УО «Полесский государственный университет», 2015

СОДЕРЖАНИЕ

Предисловие	4
Тема 1. Простые проценты	19
Тема 3. Эквивалентность процентных ставок. Изменени условий контрактов Тема 4. Потоки платежей и финансовые ренты	33
Список рекомендуемой литературы	50
Приложение 1	51
Приложение 2	52

ПРЕДИСЛОВИЕ

Потребность освоения финансовых и коммерческих вычислений связана с тем, что любая финансовая сделка предполагает выполнение предварительных расчетов с использованием различным математических методов — при составлении плана погашения задолженности, определении эффективности проведения сделки для принятия решения о ее проведении. Владение современными методами финансовых вычислений является важной составляющей в профессиональной подготовке предпринимателя, банковского служащего, менеджера и любого другого специалиста в области экономической и финансовой деятельности.

В практикуме по каждой теме кратко излагается необходимый теоретический материал, приводятся основные формулы и примеры, задачи для самостоятельного решения.

Настоящий практикум разработан для студентов экономических специальностей и слушателей ФПК и ПК.

Практикум может быть использован при проведении практических занятий, а также рекомендован для самостоятельной работы.

ТЕМА 1. ПРОСТЫЕ ПРОЦЕНТЫ

При начислении простых процентов наращенная сумма определяется по формуле:

$$S = P \times (1 + i \times n) = P \times k_H,$$

где S – наращенная сумма или будущая стоимость;

P – первоначальная сумма долга или современная (текущая) стоимость;

і – процентная ставка, выраженная в коэффициенте;

n – период начисления процентов в годах;

 $k_{\rm H} = (1 + {\rm in})$ — коэффициент (множитель) наращения простых процентов, который показывает во сколько раз наращенная сумма больше первоначальной.

Пример 1.1. Определить сумму погашения долга при условии ежегодной выплаты процентов, если банком выдан кредит в сумме 30 млн. руб. на 2 года, при ставке — 46% годовых.

Решение:

$$S = 30 \times (1 + 0.46 \times 2) = 57.6$$
 млн. руб.

Таким образом, через 2 года необходимо вернуть общую сумму в размере 57,6 млн. руб., из которой 30 млн. руб. составляет долг, а 27,6 млн. руб. – проценты.

В тех случаях, *когда срок финансовой операции менее* года, происходит модификация формулы:

1) если срок операции выражен в месяцах (М):

$$S = P \times \left(1 + i \times \frac{M}{12}\right);$$

Пример 1.2. Банк принимает вклады на срочный депозит на срок 3 месяца под 45% годовых. Рассчитать доход клиента при вложении 10 млн. руб. на указанный срок.

Решение:

$$S = 10 \times \left(1 + 0,45 \times \frac{3}{12}\right) = 11,125$$
 млн. руб.,

$$I = S - P = 11,125 - 10 = 1,125$$
 млн. руб.

Таким образом, через 3 месяца клиент получит доход в размере 1,125 млн. руб.

2) если время выражено в днях:

$$S = P \times \left(1 + i \times \frac{t}{K}\right),\,$$

где t- число дней финансовой операции;

К – расчетное число дней в году (временная база).

Временную базу (K) можно представить по-разному:

- условно состоящую из 360 дней (12 месяцев по 30 дней) (обыкновенные или коммерческие проценты);
- взять действительное число дней в году (365 дней или
 366 в високосном году) (точные проценты).

Значение числа дней финансовой операции (t) также может определяться:

- условно, исходя из того, что продолжительность любого целого месяца составляет 30 дней, а оставшиеся дни от месяца считают точно, в результате получают так называемое приближенное число дней;
- используя прямой счет или специальные таблицы порядковых номеров дней года, рассчитывают фактическое число дней между датами, в этом случае получают точное число дней.

Во всех случаях дата выдачи ссуды и дата её погашения считается за один день.

Таким образом, если время финансовой операции выражено в днях, то расчет простых процентов может быть произведен одним из трех возможных способов:

- 1) обыкновенные проценты с приближенным числом дней, или, как часто называют, «германская практика расчета»;
- 2) обыкновенные проценты с точным числом дней, или «французская практика расчета»;
- 3) точные проценты с точным числом дней, или «английская практика расчета».

Пример 1.3. Ссуда выдана в размере 20 млн. руб. на срок с 10.01.2014г. до 15.06.2014г. под 44% годовых. Определить сумму погашения ссуды и сумму начисленных процентов при различной практике их начисления.

Решение:

1) обыкновенные проценты с приближенным числом дней ссуды:

$$K = 360$$
 дней, $t = 21 + 30 \times 4 + 14 = 155$ дней;

$$S = 20 \times \left(1 + 0,44 \frac{155}{360}\right) \approx 23,789$$
 млн. руб.;

$$I = 23,789 - 20 = 3,789$$
 млн. руб.

2) обыкновенные проценты с точным числом дней ссуды:

$$K = 360$$
 дней, $t = 22 + 28 + 31 + 30 + 31 + 14 = 156$ дней;

$$S = 20 \times \left(1 + 0,44 \frac{156}{360}\right) \approx 23,813$$
 млн. руб.;

$$I = 23,813 - 20 = 3,813$$
 млн. руб.

3) точные проценты с точным числом дней ссуды:

$$K = 365$$
 дней, $t = 156$ дней;

$$S = 20 \times \left(1 + 0,44 \frac{156}{365}\right) \approx 23,761$$
 млн. руб.;

$$I = 23,761 - 20 = 3,761$$
 млн. руб.

Расчет наращенной суммы *при изменении процентной ставки во времени* определяют, используя следующую формулу:

$$S = P(1 + \sum_{m} i_{m} n_{m})$$

где m- количество периодов начисления с переменными ставками;

 n_m – продолжительность периода m;

 i_{m} – процентная ставка в периоде m.

Пример 1.4. Ссуда в размере 50 млн. руб. выдаётся на 3,5 года. Контракт предусматривает следующий порядок начисления процентов: первый год — ставка 30%, в каждом последующем полугодии ставка увеличивается на 1 п.п. Требуется определить множитель наращения и погашаемую сумму.

Решение:

$$P=50;\ i_{_1}=0,\!3;\ i_{_2}=0,\!31;\ i_{_3}=0,\!32;\ i_{_4}=0,\!33;\ \text{и т. д.}$$
 $i_{_6}=0,\!35;$

Множитель наращения

$$k_H = 1 + (1 \times 0,3) + (0,5 \times 0,31) + (0,5 \times 0,32) + (0,5 \times 0,33) + (0,5 \times 0,34) + (0,5 \times 0,35) = 2,125$$

Погашаемая сумма

$$S = 50 \times 2,125 = 106,25$$
 млн. руб.

Срок финансовой операции определяют по следующим формулам:

1) в годах:

$$n = \frac{S - P}{P \times i};$$

2) в днях:

$$t = \frac{S - P}{P \times i} K.$$

Пример 1.5. На сколько дней можно дать в долг 1000 долл. США, исходя из 5% годовых, если возвращенная сумма будет составлять 1060 долл. США?

Решение:

Исходя из формулы срока долга для простых процентов, следует:

для обычных процентов

$$t = \frac{1060 - 1000}{1000 \times 0.05}$$
360 = 432 дня;

для точных процентов

$$t = \frac{1060 - 1000}{1000 \times 0,05}$$
 365 = 438 дней.

Таким образом, сумма в 1000 долл. США может быть предоставлена на срок в 438 дней, если в условиях финансовой операции будет использован термин «точные проценты», а по умолчанию или использованию термина «обыкновенные проценты», срок ссуды сокращается до 432 дней.

Для определения **величины простой процентной ставки используют формулы:**

1) срок финансовой операции определяется в годах:

$$i = \frac{S - P}{P \times n};$$

2) срок финансовой операции определяется в днях:

$$i = \frac{S - P}{P \times t} K$$

Пример 1.6. В контракте предусматривается погашение обязательств через 120 дней в сумме 1200 долл. США, при первоначальной сумме долга 1150 долл. США. Определить доходность операции для кредитора в виде процентной ставки.

Решение:

Рассчитываем годовую процентную ставку, используя формулу «обыкновенного процента», поскольку в условиях сделки нет ссылки на «точный процент»:

$$i = \frac{1200 - 1150}{1150 \times 120} 360 = 0,13$$

Таким образом, доходность финансовой операции составит 13% годовых, что соответствует весьма высокодоходной финансовой операции.

Первоначальную сумму при простом математическом дисконтировании можно рассчитать по формуле:

1) срок финансовой операции определяется в годах:

$$P = \frac{S}{1 + i \times n}$$
;

2) срок финансовой операции определяется в днях:

$$P = \frac{S}{1 + \frac{t}{K}i}.$$

Пример 1.7. Через 6 месяцев с момента выдачи ссуды заемщик уплатил кредитору 24,4 млн. руб. Кредит предоставлялся под 44% годовых. Определить сумму кредита и сумму дисконта.

Решение:

Сумма кредита

$$P = \frac{24,4}{1+0,44 \times \frac{6}{12}} = 20$$
 млн. руб.;

сумма дисконта

$$D = S - P = 24,4 - 20 = 4,4$$
 млн. руб.

Величину получаемой ссуды при использовании простой учётной ставки можно рассчитать по формуле:

1) срок финансовой операции определяется в годах:

$$P = S(1 - nd);$$

2) срок финансовой операции определяется в днях:

$$P = S\left(1 - \frac{t}{K}d\right).$$

Пример 1.8. Ссуда выдана 23 сентября 2012 г. по простой учетной ставке, равной 28%. Заемщик должен возвратить 15 млн. руб. 17 ноября 2012 г.

Определить сумму, получаемую заемщиком, и величину дисконта по обычным процентам с точным числом дней ссуды.

Решение:

3десь S = 15; d = 0.28.

Так как по условию контракта вариант расчета 365/360, то t=55 дням, K=360 дням.

Находим сумму, получаемую заемщиком

$$P = 15 \left(1 - \frac{55}{360} 0,28 \right) = 14,358$$
 млн. руб.

Величина дисконта составит

$$D = 15 - 14{,}358 = 0{,}642$$
 млн. руб.

Годовая процентная ставка с поправкой на инфляцию (позитивная ставка):

$$i_r = i + g = i + (r + ir),$$

где r – уровень инфляции;

g = r + ir - инфляционная премия - величина, которую необходимо прибавить к ставке і для компенсации инфляционных потерь.

Позитивная ставка процента для п лет:

$$i_r = \frac{(1+ni)(1+r)^n - 1}{n}.$$

Реальная доходность финансовой операции при инфляции (реальная процентная ставка):

$$i = \frac{i_r - r}{1 + r}.$$

Формула наращенной суммы простых процентов с учётом инфляции:

$$S_r = P(1 + i_r n),$$

ИЛИ

$$S_{r} = P(1+i\times n)(1+r)^{n}.$$

Пример 1.9. Ссуда в размере 100 млн. руб. выдана в начале года с последующим погашением в конце года. Требуемая реальная доходность операции составляет 10% годовых, ожидаемый годовой уровень инфляции операции составляет 60%.

Определить множитель наращения с поправкой на инфляцию, простую позитивную ставку процентов, погашаемую сумму в конце года.

Решение:

Здесь i = 0.1, r = 0.6, P = 100.

Находим множитель наращения с поправкой на инфляцию:

$$k_{HU} = (1+i)(1+r) = (1+0,1)(1+0,6) = 1,76.$$

Определим позитивную ставку процентов:

 $i_{\rm r}=0,1+0,6+0,1\times0,6=0,76$ что составляет 76% годовых.

Находим погашаемую сумму в конце года:

$$S_r = 100(1+0.76) = 176$$
 млн. руб.

Задачи для самостоятельного решения

- **1.1.** Для финансирования оборотного капитала предприятие взяло кредит в банке в размере 100 млн. руб. сроком на 2 года с ежегодным погашением процентов. Ставка процента за пользование заемными средствами 35% годовых. Определить сумму погашения кредита и сумму начисленных процентов.
- **1.2.** Молодая семья получила в банке кредит на приобретение квартиры в размере 400 млн. руб., сроком на 15 лет под простую процентную ставку 23% годовых. Определить сумму основного долга и процентов по кредиту.
- **1.3.** Банк принимает вклады на срочный депозит на следующих условиях: процентная ставка при сроке 35 дней 43% годовых; при сроке 65 дней 45% годовых; при сроке 90 дней 46% годовых. Определить доход клиента при вкладе 7 млн. руб. на указанные сроки.
- **1.4.** Определить проценты и сумму накопленного долга, если размер кредита 5,6 млн. руб., срок 4 года, проценты простые по ставке 32% в год.
- **1.5.** Клиент положил в банк на депозит 2000 долл. США на срок с 12 апреля по 26 июня (год не високосный) под простую процентную ставку 5% годовых. Рассчитать доход клиента разными способами начисления процентов.
- 1.6. Коммерческий банк привлекает средства населения под простые проценты 47% годовых. Клиент внес 12 млн. руб. на депозит с 10 мая по 15 октября (год не високосный). Определить величину коэффициента наращения и наращенную сумму: а) при начислении точных процентов с точным числом дней в году; б) при начислении обыкновенных процентов с точным числом дней в году; в) при начислении обыкновенных процентов с приближенным числом дней.
- **1.7.** Организации предоставлен кредит в размере 120 млн. руб. под 37% годовых с 1 января по 1 июля текущего года. Определить подлежащую возврату сумму, применяя разные способы начисления процентов.

- **1.8.** Кредит в размере 10 млн. руб. выдан 20 января со сроком погашения 05 октября под 38% годовых. Какую сумму должен заплатить должник в конце срока при начислении простых процентов? При решении применить все три метода.
- **1.9.** Сумма процентов, начисленная за 100 дней пользования ссудой (на базе обыкновенных процентов) составила 42 тыс. д.е. Определить сумму начисленных процентов при использовании точных процентов с фактическим числом дней ссуды (год не високосный).
- **1.10.** Фирма внесла в коммерческий банк 28 млн. руб. на срок с 9 ноября по 21 ноября того же года. На вклады «до востребования» банк начисляет 0,5% годовых. Проценты обыкновенные с приближенным числом дней в году. Определите наращенную сумму.
- **1.11.** Вкладчик положил в банк, выплачивающий 6% годовых, 3,5 тыс. долл. США. Какая сумма будет на счете вкладчика через: а) 2 месяца; б) полгода; в) 1 год.
- **1.12.** Заемщик получил ссуду в 3 млн. руб., которую должен погасить одним платежом через 1,5 года. Расчет про- изводится по схеме простых процентов, причем первые 0,75 года годовая процентная ставка равна 33%, а в оставшееся время годовая процентная ставка равна 37%. Найти сумму, возвращаемую кредитору.
- 1.13. Клиент внес в банк 3 млн. руб. Согласно условиям договора процентная ставка может быть изменена банком в одностороннем порядке. Вклад внесен 3 апреля под 40% годовых, 22 апреля процентная ставка, согласно решению Правления банка, установлена в размере 37% годовых, а 20 мая 35% годовых. Вклад вместе с процентами получен 3 июня. Определите наращенную сумму, если расчет процентов производится по точным процентам с точным числом дней в году.
- **1.14.** Определите, какую долю составит процент от первоначальной ссуды, если срок ссуды 1,5 года, причем в первый год простая годовая ставка равна 40%, а в каждом последующем квартале понижается на 1 п.п.

- **1.15.** Контракт предусматривает следующий порядок начисления процентов по простой ставке: первый год по годовой ставке 20%, в каждом последующем полугодии ставка повышается на 1 п.п. Определите множитель наращения за 2,5 года.
- **1.16.** Первый год годовая ставка простых процентов равна 28%, а каждый последующий год увеличивается на 2 п.п. Через сколько лет утроится первоначальная сумма?
- **1.17.** Определите, какую процентную ставку должна установить при кредите 2000 долл. США финансовая компания, чтобы при сроке кредита в 84 дня иметь прибыль не менее 120 долл. США. Проценты обыкновенные с приближенным числом дней.
- **1.18.** Предприятие получило кредит на 1 год в размере 70 млн. руб. с условием возврата 80 млн. руб. Рассчитать простую процентную ставку.
- **1.19.** Клиент получил кредит сроком на 3 месяца в 6 млн. руб. Сумма возврата кредита 7,5 млн. руб. Определите процентную ставку банка.
- **1.20.** Г-н Семенов имеет возможность поместить на депозит в коммерческий банк 16 млн. руб. под 37% годовых. При простом начислении процентов на счете г-на Семенова накопится 25 млн. руб. через сколько: а) лет; б) месяцев; в) дней.
- **1.21.** Депозит рассчитывается по схеме простых процентов с годовой процентной ставкой в 20%. За какое время первоначальная сумма увеличивается в 3 раза?
- **1.22.** Определите период времени, необходимый для удвоения капитала по простым процентам при процентной ставке 32% годовых.
- **1.23.** Какую сумму нужно положить в банк, выплачивающий 39% годовых по простой процентной ставке, чтобы получить 22 млн. руб.: а) через 4 месяца; б) через 1 год; в) через 2 года 9 месяцев?

- **1.24.** Через полгода с момента выдачи ссуды должник уплатит кредитору 459 тыс. д.е. Кредит предоставлен под 38% годовых. Определить размер ссуды и сумму дисконта.
- **1.25.** Через 146 дней с момента подписания соглашения должник уплатит кредитору 201,6 тыс. д.е. Определить сумму полученного кредита и размер дисконта. Кредит выдан под 45% годовых. Расчеты производить по точным процентам.
- **1.26.** Фирма получила кредит в 140 млн. руб. на один месяц под годовую процентную ставку 46% (проценты простые). Месячный уровень инфляции 5,9%. Определите месячную процентную ставку с учетом инфляции, наращенную сумму и процентные деньги.
- 1.27. Фирма обратилась в банк за кредитом в 100 млн. руб. сроком на один месяц. Банк выделяет такие кредиты под простую годовую процентную ставку 24% без учета инфляции. Месячные уровни инфляции за три предыдущих месяца: 3,2%; 3,9%; 4,7%. Кредит выделен с учетом среднего уровня инфляции за три указанных месяца. Определите процентную ставку банка с учетом инфляции, сумму возврата, дисконт банка.
- **1.28.** Банк выдал клиенту кредит на 3 месяца. Сумма кредита 24 млн. руб. Банк требует, чтобы реальная ставка доходности была 30% годовых. Прогнозируемый средний месячный уровень инфляции 4,6%. Определите простую процентную ставку банка, наращенную сумму.
- **1.29.** Фирма взяла кредит в коммерческом банке на два месяца под процентную ставку 30% годовых (без учета инфляции). Предполагаемый средний месячный уровень инфляции 4,2%. Определите процентную ставку кредита с учетом инфляции и коэффициент наращения.
- **1.30.** Определите реальный доход от операции при уровне инфляции 10% в месяц; при уровне инфляции 8% в месяц, если средства вкладываются на год под 40% годовых.

- **1.31.** Какая должна быть ставка простых годовых процентов для того, чтобы сумма долга, взятого 11.04, увеличилась бы на 25% к 17.12, если используются обыкновенные проценты?
- **1.32.** На сумму в 2255 долл. США в течение 8 месяцев начисляются простые проценты. Базовая ставка 5% годовых повышается каждый месяц, начиная со второго, на 0,5 п.п, временная база K = 360. Чему будет равна наращенная сумма?
- **1.33.** В контракте предусматривается погашение обязательства в сумме 110 млн. руб. через 120 дней. Первоначальная сумма долга 90 млн. руб. Определить доходность ссудной операции для кредитора в виде ставки процента и учетной ставки.
- **1.34.** 25 мая открыт счет в сумме 20 млн. руб. под процентную ставку 40% годовых; 7 июля на счет было внесено 5 млн. руб.; 10 ноября со счета снята сумма 8 млн. руб.; а 1 декабря счет был закрыт. Определить сумму, полученную вкладчиком при закрытии счета, используя схему точных процентов.
- **1.35.** Задолженность по договору одного предприятия перед другим составляет 245 млн. руб. Согласно условиям договора на данную сумму задолженности начисляются проценты по простой процентной ставке 0,1% в день. Найти полную сумму долга за два с половиной месяца.
- **1.36.** Найти простые проценты, начисленные на сумму задолженности в размере 800 тыс. руб. за полгода по ставке 3,5% в месяц.
- **1.37.** На вклад в банке размером 10 млн. руб. начисляются простые проценты по ставке 36% годовых. Найти накопленные на счете суммы через 3 месяца.
- **1.38.** Определить первоначальную сумму вклада, на который начислялись проценты по простой ставке 36% годовых за период 2 года и 2 месяца, если по окончании срока на счету находилась сумма 28 млн. руб.

- **1.39.** Вкладчик поместил в банк 10 млн. руб. Какова будет наращенная за 2 года сумма вклада, если за первый квартал начисляются проценты в размере 36% годовых, а каждый последующий квартал процентная ставка возрастает на 0,5 п.п?
- **1.40.** Задолженность по договору одного предприятия перед другим составляет 15 млн. руб. Согласно условиям договора проценты начисляются по простой процентной ставке 0,1% в день. Найти период задолженности, если она была погашена в полном объеме вместе с начисленными процентами в сумме 20 млн. руб.
- **1.41.** Кредит для покупки товара на сумму 3,7 млн. руб. открыт на 9 месяцев, процентная ставка 30% простых годовых. Какова реальная доходность банка по данным операциям, если темп инфляции 12% годовых?

тема 2. Сложные проценты

Формула сложных процентов

Сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу по формуле:

$$S = P(1+i)^n = P \times k_H,$$

где S – наращенная сумма;

Р – первоначальная сумма долга;

i – ставка сложных процентов, выраженная в коэффициенте;

n – количество периодов начисления;

 $k_{_{\rm H}}$ – коэффициент (множитель) наращения сложных процентов.

Пример 2.1. Вкладчик имеет возможность поместить денежные средства в размере 7,5 млн. руб. на депозит в коммерческий банк на 2 года под 42% годовых.

Определить сумму начисленных процентов к концу срока вклада, при начислении сложных процентов.

Решение:

$$S = 7,5 \times (1+0,42)^2 \approx 8,143$$
 млн. руб.

$$I = 8,143 - 7,5 = 0,643$$
 млн. руб.

Сумма начисленных процентов к концу срока вклада составит 643 тыс. руб.

В случае, когда *срок финансовой операции выражен дробным числом лет*, начисление процентов возможно с использованием двух методов:

1) общий метод заключается в прямом расчете по формуле сложных процентов:

$$S = P(1+i)^n,$$

где n = a + b; a -целое число лет;

b – дробная часть года.

2) *смешанный метод* расчета предполагает для целого числа лет периода начисления процентов использовать формулу сложных процентов, а для дробной части года — формулу простых процентов:

$$S = P(1+i)^{a} \times (1+i \times b).$$

Пример 2.2. В банке получен кредит под 9,5% годовых в размере 25 тыс. долл. США со сроком погашения через два года и 9 месяцев. Определить сумму, которую необходимо вернуть по истечении срока займа двумя способами, учитывая, что банк использует германскую практику начисления процентов.

Решение:

1) общий метод:

$$S = 25(1+0.095)^{2.75} = 32.087$$
 тыс. долл. США;

2) смешанный метод:

$$S = 25(1+0.095)^2 \times \left(1+0.095 \times \frac{9}{12}\right) = 32,111$$
 тыс. долл.

США.

Таким образом, по общему методу проценты по кредиту составят:

$$I = S - P = 32,087 - 25 = 7,087$$
 тыс. долл. США;

а по смешанному методу:

$$I = S - P = 32,111 - 25 = 7,111$$
 тыс. долл. США.

Как видно, смешанная схема более выгодна кредитору.

Если *проценты начисляются и присоединяются т раз в год*, то наращенная сумма по схеме эффективных сложных процентов определяется по формуле:

$$S = P \times \left(1 + \frac{\mathsf{j}}{m}\right)^{mn},\,$$

где ј – годовая номинальная ставка;

 $\left(1+rac{j}{m}
ight)^{mn}$ — коэффициент наращения эффективной ставки;

m — число случаев начисления процентов за год; mn — число случаев начисления процентов за период.

Пример 2.3. Рассчитать сумму выплаты по депозиту в размере 20 млн. руб., помещенному на 1 год под 36% годовых с ежеквартальным начислением процентов.

Решение:

$$S = 20 \times \left(1 + \frac{0,36}{4}\right)^{4 \times 1} = 28,232$$
 млн. руб.

Таким образом, через 1 год выплата по депозиту составит 28,232 млн. руб., из которой 20 млн. руб. – первоначальная сумма, помещённая на депозит, а 8,232 млн. руб. – проценты.

Эффективная ставка измеряет тот реальный относительный доход, который получен в целом за год, с учетом внутригодовой капитализации. Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m-разовое наращение в год по ставке j/m:

$$i_{9\phi} = \left(1 + \frac{j}{m}\right)^{mn} - 1.$$

Пример 2.4. Банк в конце года выплачивает по вкладам 35% годовых. Какова реальная доходность вкладов при начислении процентов: а) ежеквартально; б) по полугодиям.

Решение:

а)
$$i_{9\phi} = \left(1 + \frac{0.35}{4}\right)^{4\times1} - 1 \approx 0.399$$
 или 39,9%;

b)
$$i_{9\phi} = \left(1 + \frac{0.35}{2}\right)^{2\times 1} - 1 \approx 0.381$$
 или 38,1%.

Таким образом, эффективная ставка, эквивалентная номинальной ставке процентов в размере 35% годовых при ежеквартальном начислении процентов, составит 39,9% против 38,1% с начислением процентов по полугодиям. Начисление 35% годовых ежеквартально выгодней для вкладчика.

Для расчета наращенной суммы *при изменении про- центной ставки во времени* при начислении сложных процентов применяется формула:

$$S = P \prod_{t=1}^{m} (1 + i_t)^{n_t},$$

где i_t –процентная ставка в периоде t;

 n_t — длительность периода t, в течение которого используется соответствующая ставка.

Пример 2.5. Фирма получила кредит в банке на сумму 100 тыс. долл. США сроком на 5 лет. Процентная ставка по кредиту определена в 9% для 1-го года, для 2-го года предусмотрена надбавка к процентной ставке в размере 1,5%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.

Решение:

$$S = 100(1+0.09) \times (1+0.105) \times (1+0.115)^3 = 166.960$$
 тыс. долл. США.

Таким образом, сумма, подлежащая погашению в конце срока займа, составит 166,960 тыс. долл. США. Из которых 100 тыс. долл. США являются непосредственно суммой долга, а 66,96 тыс. долл. США – проценты по долгу.

Если *проценты начисляются непрерывно*, за сколь угодно малый промежуток времени, то наращенная сумма определяется по формуле:

$$S = P \times \varepsilon^{\delta \times n}$$
.

где є ≈ 2,718281 называется числом Эйлера и является одной из важнейших постоянных математического анализа;

$$\delta = \ln(1+i)$$
 – сила роста.

Пример 2.6. Кредит в размере 100 тыс. долл. США получен сроком на 3 года под 9% годовых. Определить сумму подлежащего возврату в конце срока кредита, если проценты будут начисляться: а) один раз в год; б) ежедневно; в) непрерывно.

Решение:

а) начисление один раз в год

$$S = 100 \times (1+0.09)^3 = 129,503$$
 тыс. долл. США;

b) ежедневное начисление процентов

$$S = 100 \times \left(1 + \frac{0.09}{360}\right)^{360 \times 3} = 130,992$$
 тыс. долл. США;

с) непрерывное начисление процентов

$$S = 100 \times 2,718281^{0.09 \times 3} = 130,996$$
 тыс. долл. США.

Таким образом, в зависимости от частоты начисления процентов наращение первоначальной суммы осуществляется с различными темпами, причем максимально возможное наращение осуществляется при бесконечном дроблении годового интервала.

Определение срока ссуды:

$$n = \frac{\ln \frac{S}{P}}{\ln(1+i)}, \qquad n = \frac{\ln \frac{S}{P}}{\ln(1+\frac{j}{m})^{m}}.$$

Определение величины процентной ставки:

$$i = \sqrt[n]{\frac{S}{P}} - 1,$$
 $i = \left(\sqrt[mn]{\frac{S}{P}} - 1\right)m.$

Сложная позитивная ставка:

$$j_r = j + g = j + (r + jr),$$

а при *m*-разовом начислении процентов

$$j_r = m \left(\left(1 + \frac{j}{m} \right) \sqrt[m]{1+r} - 1 \right).$$

Величина наращенной суммы:

$$S_r = P \left(1 + \frac{j_r}{m}\right)^{mn}$$
 или $S_r = P \left(1 + \frac{j}{m}\right)^{mn} \times \left(1 + r\right)^n$.

Реальная доходность финансовой операции при инфляции (реальная процентная ставка):

$$j = \frac{j_r - r}{1 + r};$$

а при *т*-разовом начислении процентов

$$j = \frac{m + j_r}{\sqrt[m]{1 + r}} - m.$$

Пример 2.7. Определить реальную годовую доходность финансовой операции, если при уровне инфляции 1,8% в месяц выдаётся кредит на год под номинальную позитивную годовую ставку сложных процентов в 50% при ежемесячном начислении процентов.

Решение:

Определим годовой индекс инфляции:

$$I_r = (1+0.018)^{12} = 1.239.$$

Уровень инфляции составит:

$$r = I_r - 1 = 1,239 - 1 = 0,239.$$

Определим реальную годовую доходность финансовой операции:

$$j = \frac{12 + 0.5}{\sqrt[12]{1 + 0.239}} - 12 = 0.279$$
 или 27,9%.

Математическое дисконтирование по сложной ставке процента:

$$P = \frac{S}{(1+i)^n}.$$

Величина дисконта:

$$D = S - P = S \left(1 - \frac{1}{\left(1 + i \right)^n} \right).$$

Пример 2.8. Через два года фирме потребуются деньги в размере 300 млн. руб., какую сумму необходимо сегодня поместить в банк, начисляющий 35% годовых, чтобы через 2 года получить требуемую сумму?

Решение:

Поскольку срок финансовой операции составляет более года, то используем формулу приведения для сложных процентов:

$$P = \frac{300}{(1+0.35)^2} \approx 164.6$$
 млн. руб.

Таким образом, фирме следует разместить на счете 164,6 млн. руб. под 35% годовых, чтобы через два года получить желаемые 300 млн. руб.

Если *начисление процентов производится* **m** *paз в год*, то формула примет вид:

$$P = \frac{S}{\left(1 + \frac{j}{m}\right)^{mn}}.$$

Банковское дисконтирование по сложной учетной ставке:

$$P = S \times (1 - d_c)^n,$$

$$D = S - P = S(1 - (1 - d_c)^n).$$

Пример 2.9. Определить величину суммы, выдаваемую заемщику, если он обязуется вернуть ее через два года в размере 55 млн. руб. Банк определяет свой доход с использованием годовой учетной ставки 30%.

Решение:

Используя формулу дисконтирования по сложной учетной ставке, определяем:

$$P = 55 \times (1 - 0.3)^2 = 26.95$$
 млн. руб.

Заемщик может получить ссуду в размере 26,95 млн. руб., а через два года вернет 55 млн. руб.

При дисконтировании т раз в году используются формулы:

$$P = S \times \left(1 - \frac{d_{c}}{m}\right)^{mn};$$

$$D = S - P = S\left(1 - \left(1 - \frac{d_{c}}{m}\right)^{mn}\right).$$

Задачи для самостоятельного решения

- **2.1.** Фирме предоставлен льготный кредит в 50 тыс. долл. США на 3 года под 10% годовых. Проценты на кредит начисляются один раз в год. По условиям договора фирма имеет право оплатить кредит и проценты единым платежом в конце трехлетнего периода. Сколько должна заплатить фирма при расчете по простым и сложным процентам?
- **2.2.** Клиент поместил в банк 3 млн. руб. 1 февраля. Процентная ставка банка с 1 февраля по 18 февраля 50% годовых; с 19 февраля по 7 марта 48% годовых; с 8 марта по 23 марта 43% годовых; с 24 марта по 19 апреля, когда был изъят вклад 38% годовых. Определите доход клиента и эффективную процентную ставку. Методика расчета: обыкновенные проценты с приближенным числом дней.
- **2.3.** Банк принимает валютные вклады на депозит с номинальной процентной ставкой 5% годовых. Начисление процентов ежемесячное. Определите доход клиента при вкладе 2500 долл. США и сроке вклада 6 месяцев.
- **2.4.** Определите наращенную сумму вклада в 5 млн. руб. при сроке вклада 2 года по номинальной процентной ставке 40% годовых. Начисление процентов производится: а) один раз в год, б) по полугодиям, в) поквартально, г) ежемесячно.
- **2.5.** Банк принимает вклады от населения по номинальной процентной ставке 12% годовых. Начисление процентов ежемесячное. Вклад 1200 долл. США был изъят через 102 дня. Определите доход клиента.
- **2.6.** Производственно-коммерческая фирма получила кредит в 190 млн. руб. сроком на 3 года. Проценты сложные. Процентная ставка за первый год 40% и каждый последующий год увеличивается на 5 п.п. Определите сумму возврата кредита.
- **2.7.** Заемщик получил ссуду в 3 млн. руб., которую должен погасить одним платежом через 1,5 года. Расчет производится по схеме сложных процентов, причем первые 0,75

года годовая процентная ставка равна 43%, а в оставшееся время годовая процентная ставка равна 47%. Найти сумму, возвращаемую кредитору.

- **2.8.** Определите период времени, необходимый для утроения капитала по простым и сложным процентам при процентной ставке 48% годовых. В последнем случае начисление процентов квартальное.
- **2.9.** Сколько времени нужно хранить вклад в банке под 36% годовых при ежемесячном, поквартальном и полугодовом начислении процентов, чтобы сумма вклада удвоилась.
- **2.10.** Клиент внес на депозит сроком на 4 месяца 1600 долл. США. Начисление процентов ежемесячное. После окончания срока он получил 1732 долл. США. Определите процентную ставку банка.
- **2.11.** Какой должна быть минимальная процентная ставка, чтобы произошло удвоение вклада за год при начислении процентов: а) поквартально, б) ежемесячно.
- **2.12.** Банк предлагает населению денежный вклад, по которому доход за первые 2 месяца составит 32% годовых, за следующие 2 месяца 34%, за 5 месяцев 38%, за 6 месяцев 42% годовых. Определите эффективную процентную ставку при размещении денег на 6 месяцев под указанные простые и сложные проценты. В последнем случае начисление процентов ежемесячное.
- **2.13.** Реклама одного коммерческого банка предлагает 44% годовых при ежемесячном начислении процентов. Другой коммерческий банк предлагает 48% годовых при поквартальном начислении процентов. Срок хранения вклада 12 месяцев. Какому банку отдать предпочтение?
- **2.14.** Сопоставьте условия четырех банков: а) проценты простые и процентная ставка 48%; б) номинальная процентная ставка 46% годовых, начисление процентов происходит по полугодиям; в) номинальная процентная ставка 45%, начисление процентов поквартальное; г) номинальная процентная ставка 44%, начисление процентов ежемесячное.

- **2.15.** Клиент разместил вклад в 100 млн. руб. на срочный депозит сроком 8 месяцев. Начисление процентов ежемесячное под номинальную процентную ставку 36% годовых. Определите наращенную сумму и эффективную процентную ставку.
- **2.16.** Предприятие получило кредит на 3 года под номинальную процентную ставку 40% годовых. Комиссионные составляют 5% от суммы кредита. Определите эффективную процентную ставку при начислении процентов: а) один раз в год, б) поквартально, в) ежемесячно.
- **2.17.** Предприятие получило кредит на 3 года под годовую процентную ставку 48%. Комиссионные составляют 5% от суммы кредита. Определите эффективную процентную ставку кредита, если: а) кредит получен под простые проценты, б) кредит получен под сложные проценты с начисление процентов один раз в год, в) при ежемесячном начислении процентов.
- **2.18.** Кредит в 500 тыс. руб. получен сроком на один год под номинальную процентную ставку 18% годовых. Начисление процентов ежемесячное. Ожидаемый среднемесячный уровень инфляции 3%. Определите процентную ставку банка с учетом инфляции и наращенную сумму.
- **2.19.** Месячные уровни инфляции ожидаются на уровне 3%. Определите истинную процентную ставку доходности годового вклада, если банки принимают вклады под номинальные процентные ставки 40%, 50%, 60%. Проценты сложные и начисляются ежемесячно.
- **2.20.** Средний месячный уровень инфляции с января по июнь 2013г. 5,9%. Какой должна быть годовая процентная ставка банка по депозитам, чтобы обеспечить реальную доходность вкладов 12% годовых? Проценты сложные и начисляются ежемесячно.
- **2.21.** Коммерческий банк принимал вклады от населения в первой половине 1997 г. под процентную ставку 54% годовых. Проценты начисляются ежемесячно. Средний месячный

уровень инфляции – 5,9%. Определите реальную процентную ставку доходности.

- **2.22.** Коммерческие банки принимают вклады от населения «до востребования» под 60% годовых с ежемесячной капитализацией процентов. Определите истинную процентную ставку банка с учетом инфляции, наращенную сумму и доходность клиента от вклада в 3 млн. руб. по истечении 1 года, если средний уровень инфляции 3,5%.
- **2.23.** Сравните скорость наращения суммы в 1000 руб. по простым и сложным процентам, если годовая ставка равна 20%, для сроков в полгода, год, два года, три года. Сравните результаты, сделайте выводы.
- **2.24.** За сколько лет удвоится сумма долга, если применяется сложная годовая ставка 20%?
- **2.25.** Чему равна эффективная ставка процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 20%?
- **2.26.** За какой срок сумма в 1 млн. руб. возрастет до 2 млн. руб. при условии, что на нее начисляются проценты по сложной ставке 20% годовых? Временная база K = 365.
- **2.27.** Курс доллара вырос с 30,2 до 30,3 руб. Как изменилась доходность экспортной операции, если при прежнем обменном курсе она равнялась 25% годовых, и на ее осуществление требовалось 15 дней? Временная база К = 365.
- **2.28.** Эффективная ставка процента равна 20% годовых. Чему должна быть равна квартальная ставка, чтобы обеспечить такую годовую доходность?
- **2.29.** Найдите эффективную годовую сложную учетную ставку, если номинальная учетная ставка равна 15%, а дисконтирование предусматривается ежеквартальное.
- **2.30.** За 8 лет первоначальная сумма вклада выросла в 10 раз. Найти годовую учетную ставку, если при расчете используется схема: а) простых процентов; б) сложных процентов.

- **2.31.** Остров Манхэттен был «куплен» в 1624 г. у индейского вождя за 24 долл. США. Стоимость земли этого острова 350 лет спустя оценивалась в 40 млрд. долл. США. При какой ставке годовых процентов возможен такой рост? Какая будет при этом простая ставка процентов?
- **2.32.** На первоначальную сумму в 580 долл. США в течение 2,5 лет начисляются проценты по годовой ставке 8,75%. Насколько больше будет наращенная сумма, вычисленная по смешанному методу, чем по общему методу, если K = 360 дней?
- **2.33.** Запас древесины лесного массива в данный момент оценивается в 1 млн. м3. Каков будет запас древесины через 50 лет при годовой силе роста 10%?
- **2.34.** На депозитный счет внесена сумма 10 млн. руб. на срок три года под 28% годовых. Найти наращенную сумму и сложные проценты за этот срок.
- **2.35.** Задолженность по договору одного предприятия перед другим составляет 1 млн. руб. Согласно условиям договора на данную сумму задолженности начисляются проценты по сложной процентной ставке 0,1% в день. Найти полную сумму долга за два с половиной месяца.
- **2.36.** Найти проценты, начисленные на сумму задолженности в размере 500 тыс. руб. за полгода по ставке 2% в месяц.
- **2.37.** На вклад в банке размером 10 млн. руб. начисляются проценты по ставке 26% годовых. Найти накопленные на счете суммы через 7 месяцев при начислении сложных процентов.
- **2.38.** 1 млн. руб. инвестирован на 1 год по ставке 13% годовых. Найти наращенную сумму и ее приращение при начислении сложных процентов.
- **2.39.** Кредитная организация начисляет на вклады сложные проценты по номинальной ставке 18% годовых. Рассчитать полную сумму вклада на сумму 1900 тыс. руб. за 6 месяцев при ежемесячной капитализации.

- **2.40.** Определить первоначальную сумму вклада, на который начислялись проценты по ставке 16% годовых с ежедневной капитализацией за период 2 года и 1 месяц, если по окончании срока на счету находилась сумма 22,6 млн. руб.
- **2.41.** 32 млн. руб. инвестированы на 6 месяцев по ставке 15% годовых. Найти наращенную сумму и ее приращение при начислении сложных процентов еженедельно.
- **2.42.** Коммерческий банк начисляет на вклады сложные проценты по номинальной ставке 28% годовых. Определить доход вкладчика от вложения средств в сумме 2,5 млн. руб. на срок 3 месяца, если проценты начисляются ежемесячно.
- **2.43.** Найти величину дисконта от суммы задолженности в размере 3,5 млн. руб. за полгода по сложной учетной ставке 1,5% в месяц.
- **2.44.** Ссуда в размере 130 млн. руб. получена предприятием на срок 5 лет. Проценты начисляются по сложной ставке, равной 28% годовых. Расчетный уровень инфляции 11% в год. Определить реальную доходность инвестора по данной операции, а также его реальный доход.
- **2.45.** Коммерческий банк предоставил кредит строительной организации в размере 355 млн. руб. на 3 года. Прогнозируется ежегодный рост цен в 1,2 раза. Определите ставку процентов при выдаче кредита и наращенную сумму долга, если реальная доходность данной операции должна составлять 10% годовых по ставке сложных процентов.

ТЕМА 3. ЭКВИВАЛЕНТНОСТЬ ПРОЦЕНТНЫХ СТАВОК. ИЗМЕНЕНИЕ УСЛОВИЙ КОНТРАКТОВ

Эквивалентная процентная ставка — это ставка, которая для рассматриваемой финансовой операции даст точно такую же наращенную сумму, что и применяемая в этой операции ставка.

1) эквивалентность простой ставки процентов и простой учетной ставки:

$$i_{\pi} = \frac{d_{\pi}}{1 - d_{\pi} \times n}, \qquad d_{\pi} = \frac{i_{\pi}}{1 + n \times i_{\pi}};$$

2) эквивалентность простой и сложной процентных ставок:

$$i_{\pi} = \frac{(1+i_{c})^{n}-1}{n},$$
 $i_{c} = \sqrt[n]{1+n\times i_{\Pi}}-1;$

3) эквивалентность простой процентной ставки и номинальной процентной ставки:

$$i_{\Pi} = \frac{\left(1 + \frac{j}{m}\right)^{mn} - 1}{n}, \qquad j = \left(\sqrt[mn]{1 + n \times i_{\Pi}} - 1\right)m;$$

4) эквивалентность простой учетной ставки и ставки сложных процентов:

$$i_{c} = \frac{1}{\sqrt[n]{1 - n \times d_{\Pi}}} - 1,$$

$$d_{\pi} = \frac{1}{n} \left(1 - \frac{1}{(1 + i_{C})^{n}} \right);$$

5) эквивалентность номинальной ставки сложных процентов при начислении процентов m раз в год и простой учетной ставки:

$$j = m \times \left(\frac{1}{\sqrt[m]{1 - n \times d_{\Pi}}} - 1\right), \qquad d_{\Pi} = \frac{1}{n} \left(1 - \frac{1}{\left(1 + \frac{j}{m}\right)^{mn}}\right);$$

6) эквивалентность сложной ставки процентов и сложной учетной ставки:

$$i_c = \frac{d_c}{1 - d_c}$$
, $d_c = \frac{i_c}{1 + i_c}$;

7) эквивалентность сложной учетной ставки и номинальной сложной процентной ставки:

$$\mathbf{d}_{c} = 1 - \frac{1}{\left(1 + \frac{\mathbf{j}}{\mathbf{m}}\right)^{\mathbf{m}}}, \qquad \mathbf{j} = m \times \left(\frac{1}{\sqrt[m]{1 - d_{c}}} - 1\right);$$

8) эквивалентность непрерывных и дискретных процентных ставок:

$$i = e^{\delta} - 1,$$
 $\delta = \ln(1+i);$

9) эквивалентность силы роста и номинальной ставки:

$$\delta = m \times \ln(1 + j/m),$$
 $j = m[e^{\delta/m} - 1];$

10) эквивалентность силы роста и простой учетной ставки:

$$\delta = -\frac{\ln(1 - n \times d_{\Pi})}{n}, \qquad d_{\Pi} = \frac{1 - e^{-\delta}}{n};$$

11) эквивалентность силы роста и сложной учетной ставки:

$$\delta = -\ln(1 - d_c), \qquad d_c = 1 - e^{-\delta}.$$

Средняя ставка для простых процентов:
$$\bar{i} = \frac{\sum\limits_{t=1}^{N} i_{t} n_{t}}{\sum\limits_{t=1}^{N} n_{t}}.$$

Средняя учетная ставка:
$$\overline{d} = \frac{\sum_{t=1}^{N} d_t n_t}{\sum_{t=1}^{N} n_t}.$$

Средняя ставка для сложных процентов: $\bar{i} = \sqrt[n]{\prod_{t=1}^{N} \left(1 + i_{t}\right)^{n_{t}}} - 1.$

Объединение нескольких платежей в один называется консолидацией платежей.

Сумма консолидированного платежа определяется по формуле:

$$S' = \sum_{l=1}^{L} S'_l \times k_{\scriptscriptstyle H} + \sum_{p=1}^{P} S'_p \times k_{\scriptscriptstyle \mathcal{I}},$$

где S' – наращенная сумма нового консолидированного платежа;

 S'_l — наращенные суммы объединяемых платежей, l=1,2,...,L., таких что $n_l < n$ (срок данных платежей меньше срока нового консолидированного платежа);

 S'_p — наращенные суммы объединенных платежей, p = 1,2,...,P, таких, что $n_p > n$ (срок данных платежей больше срока нового консолидированного платежа);

n- срок консолидированного платежа, $n_l < n < n_p;$

 $k_{\rm H}$ – множитель наращения;

 $k_{\rm I\!I}$ – множитель дисконтирования.

Начисление процентов (дисконтирование)	Множитель наращения $(k_{\scriptscriptstyle H})$	Множитель дисконтирования (k _Д)
по простой процентной ставке	$1+i_{II}\times t_{l}$	$(1+i_{II}\times t_p)^{-1}$
по сложной процентной ставке	$(1+i_c)^{t_l}$	$(1+i_c)^{-t_p}$
по простой учетной ставке	$(1-d_{II}\times t_l)^{-1}$	$(1-d_{II}\times t_p)$
по сложной учетной ставке	$(1-d_c)^{-t_l}$	$(1-d_c)^{t_l}$
по номинальной процентной ставке	$(1+j/m)^{m\times t_l}$	$(1+j/m)^{-m\times tp}$
по номинальной учетной ставке	$(1-\mathrm{d}/m)^{-m\times t_l}$	$(1-d/m)^{m\times p}$

Пример 3.1. Решено консолидировать два платежа со сроками 20.04 и 10.05 и суммами платежа 20 млн. руб. и 30 млн. руб. Срок консолидации платежей 31.05. Определить сумму консолидированного платежа при условии, что ставка простых процентов равна 10% годовых.

Решение:

Определим временной интервал между сроками для первого платежа и консолидированного платежа (дата выдачи и дата погашения считается за один день):

$$t_1 = 11$$
 (апрель) + 31 (май) – 1 = 41 день;

для второго платежа и консолидированного платежа:

$$t_2 = 22$$
 (май) $-1 = 21$ день.

Отсюда сумма консолидированного платежа будет равна:

$$S' = 20 \times \left(1 + 0.1 \frac{41}{360}\right) + 30 \left(1 + 0.1 \frac{21}{360}\right) = 50.4$$
 млн. руб.

Таким образом, консолидированный платеж со сроком 31.05 составит 50,4 млн. руб.

Срок консолидированного платежа определяется по формуле:

$$n = \frac{1}{i} \left(\frac{S'}{\sum S'_{p} k_{\mathcal{A}}} - 1 \right).$$

Пример 3.2. Три платежа 8 млн. руб. со сроком 130 дней, 10 млн. руб. со сроком 160 дней и 4 млн. руб. со сроком 200 дней заменяются одним в размере 21 млн. руб. Стороны договорились об использовании простой процентной ставки 20% годовых. Определить срок консолидированного платежа при базе К = 365 дней.

Решение:

Сумма консолидированного платежа:

$$S' = 8 \times \left(1 + 0, 2\frac{130}{365}\right) + 10\left(1 + 0, 2\frac{160}{365}\right) + 4\left(1 + 0, 2\frac{200}{365}\right) =$$
 = 20,266 млн. руб.

Срок консолидированного платежа:

$$n = \frac{1}{0,2} \left(\frac{21}{20,266} - 1 \right) = 0,18086$$
 года.

Задачи для самостоятельного решения

- **3.1.** Кредит выдан под 12,5 сложных годовых процентов. Каков должен быть уровень эквивалентной ставки простых процентов (K = 360) при сроке кредита: а) 8 лет, б) 7 месяцев?
- **3.2.** На сумму в 2255 долл. США в течение 8 месяцев начисляются простые проценты. Базовая ставка 5% годовых повышается каждый месяц, начиная со второго, на 0.5%, временная база K = 360. Чему будет равна средняя процентная ставка?
- **3.3.** Кредит выдан на 5 лет под 8% годовых, начисление процентов в конце года. Какую номинальную годовую ставку процентов необходимо назначить, чтобы получить к концу пятого года ту же наращенную сумму при поквартальном начислении процентов? Будет ли зависеть эта номинальная ставка от срока ссуды?
- **3.4.** Сумма, на которую начисляются непрерывные проценты, равна 2 млн. руб., сила роста 10%, срок 5 лет. Найти наращенную сумму, соответствующую ставку сложных процентов.
- **3.5.** Простая процентная ставка равна 10% годовых. Определить значение эквивалентной ей простой учетной ставки при выдаче ссуды сроком на 1 год.
- **3.6.** Кредит предоставлен с начислением на первоначальную сумму 25% сложных годовых. Какова должна быть эквивалентная ставка простых процентов при сроке кредита: а) 3 года; б) 3 месяца?
- **3.7.** Кредит предоставлен с начислением на первоначальную сумму 25% простых годовых. Какова должна быть эквивалентная ставка сложных процентов при сроке кредита: а) 3 года; б)3 месяца?
- **3.8.** Банк 1 предлагает следующие условия для размещения капитала: 6% годовых с ежемесячным начислением процентов (проценты сложные). Условия банка 2 простая

процентная ставка 9% годовых. Определить, какие условия выгоднее для вкладчика, если срок равен 2 года.

- **3.9.** Банк начисляет сложные проценты на вклады по номинальной ставке 25% годовых. Определите доходность данной операции по годовой ставке простых процентов, если проценты начисляются ежемесячно.
- **3.10.** Банк начисляет простые проценты на вклады по ставке 25% годовых. Определите доходность данной операции по номинальной ставке сложных процентов в случае их ежеквартального начисления.
- **3.11.** Определить номинальную процентную ставку с ежемесячным начислением сложных процентов, которая эквивалентна силе роста, равной 4%, при начислении непрерывных процентов в течение года.
- **3.12.** Определить эффективную сложную ставку процентов (обычные проценты) при покупке обязательства по простой учетной ставке 10% со сроком оплаты через 120 дней (точные проценты).
- **3.13.** Доходность покупки финансового обязательства сроком оплаты через 245 дней составила 10% годовых (обычные сложные проценты). Определить эквивалентное значение учетной ставки (точные проценты).
- **3.14.** Банк принимает срочные вклады на 3 месяца с выплатой дохода за срок в размере 34%. Определить эффективную годовую ставку процентов при вложении средств на 9 месяцев с переоформлением вклада и начислением процентов через каждые 3 месяца.
- **3.15.** Кредит выдан на 5 лет по простой ставке процентов 42% годовых. Определить эквивалентную ставку сложных процентов.
- **3.16.** На срочный вклад начисляются ежемесячно проценты по номинальной ставке сложных процентов 25% годовых. Определить эквивалентную годовую ставку сложных процентов.

- **3.17.** На депозитный сертификат сроком 3 года начисляются простые проценты по ставке 24% годовых. Определить эквивалентную ставку сложных процентов.
- **3.18.** На вклад ежеквартально начисляются проценты по номинальной годовой ставке 26%. Определить доходность вклада по сложной годовой ставке процентов.
- **3.19.** Определить величину силы роста при начислении непрерывных процентов в течение года, эквивалентную учетной ставке простых процентов, равной 16%.
- **3.20.** Фирма собирается купить здание. Существует два вида оплаты: а) 1000 д.е. наличными сразу; б) 500 д.е. наличными сразу и 800 д.е. с платежом через 5 лет. Какой из вариантов вы предпочли бы для фирмы-покупателя, беря при расчетах за основу среднюю банковскую ставку процентов 10% годовых?
- **3.21.** Четыре платежа: 10,5 тыс., 12 тыс., 8,4 тыс. и 7,25 тыс. долл. США со сроками оплаты соответственно 3.03; 8.04; 17.06; 13.09 (год не високосный) решено заменить одним платежом, выплачиваемым 15.08. При такой замене стороны согласились использовать годовую ставку простых процентов 6,5%. В качестве базовой даты можно выбрать любую из дат оплаты платежей. Какую базовую дату следует выбрать, чтобы консолидированный платеж: а) был минимальным; б) был максимальным? Определите величину консолидированного платежа для каждого из вариантов.
- **3.22.** Четыре платежа из условий предыдущей задачи решено консолидировать в один платеж S, выплачиваемый 1.03. При консолидации используется ставка 9,25 простых годовых процентов. Базовая дата 1.03; временная база K = 365 дней. Найти величину S.
- **3.23.** Платеж в размере 1 млн. руб. со сроком уплаты через 3 года заменяется платежом со сроком уплаты через 2 года. Применяется сложная процентная ставка 20% годовых. Какова сумма нового платежа?

- **3.24.** Платеж в размере 2 млн. руб. со сроком уплаты через 2 года заменяется платежом в размере 3 млн. руб. Применяется сложная процентная ставка 20% годовых. Определить величину нового срока.
- **3.25.** Платеж в размере 1 млн. руб. со сроком уплаты через 3 года заменяется платежом со сроком уплаты через 6 лет. Применяется сложная процентная ставка 20% годовых. Какова сумма нового платежа?
- **3.26.** Три платежа в 400, 500 и 600 д.е. со сроками выплат соответственно через 2, 2,5 и 4 года заменяются одним платежом, выплачиваемым через 3 года, при этом используется сложная процентная ставка 20% годовых. Найти величину консолидированного платежа.
- **3.27.** Три платежа в 400, 500 и 600 д.е. со сроками выплат соответственно через 2, 2,5 и 4 года заменяются одним платежом, выплачиваемым через 3 года, при этом используется сложная процентная ставка 20% годовых. Какой будет срок выплаты, если консолидированный платеж будет равен сумме исходных платежей?

ТЕМА 4. ПОТОКИ ПЛАТЕЖЕЙ И ФИНАНСОВЫЕ РЕНТЫ

Ряд последовательных фиксированных платежей, производимых через равные промежутки времени, называются финансовой рентой или аннуитетом.

По моменту выплат ренты делятся на:

- постнумерандо (обыкновенные) платежи производятся в конце периодов,
- пренумерандо платежи производятся в начале периодов,
 - ренты с платежами в середине периодов.

Наращенной суммой ренты (S) называется сумма всех членов потока платежей с начисленными на них процентами на конце срока.

Современная величина потока платежей (A) показывает, какую сумму следовало бы иметь первоначально, чтобы, разбив ее на равные взносы, при начислении процентов в течение срока ренты, можно было получить наращенную сумму.

Годовая рента – платежи производятся один раз в году.

Обычная годовая рента

Вид ренты	Наращенная сумма	Современная стоимость				
постнумерандо	$S = R \frac{(1+i)^n - 1}{i} = Rs_{n,i}$	$A = R \frac{1 - (1 + i)^{-n}}{i} = Ra_{n,i}$				
пренумерандо	$S = R(1+i)\frac{(1+i)^n - 1}{i} = Rs_{n,i}^*$	$A = R(1+i)\frac{1 - (1+i)^{-n}}{i} = Ra_{n,i}^*$				

Годовая рента с начислением процентов т раз в году

Вид ренты	Наращенная сумма	Современная стоимость
Постну- мерандо	$S = R \frac{(1+j/m)^{m \times n} - 1}{(1+j/m)^m - 1}$	$A = R \frac{1 - (1 + j/m)^{-m \times n}}{(1 + j/m)^m - 1}$
Прену- мерандо	$S = R(1 + j/m)^{m} \frac{(1 + j/m)^{m \cdot n} - 1}{(1 + j/m)^{m} - 1}$	$A = R(1+j/m) \frac{1 - (1+j/m)^{-m \times n}}{(1+j/m)^{m \times n} - 1}$

Срочная рента – платежи производятся несколько раз в году (p - pas).

Срочная рента с начислением процентов один раз в году

Вид ренты	Наращенная сумма	Приведенная величина
постнумерандо	$S = \frac{R}{p} \frac{(1+i)^{n} - 1}{(1+i)^{1/p} - 1}$	$A = \frac{R}{p} \frac{1 - (1+i)^{-n}}{(1+i)^{1/p} - 1}$
пренумерандо	$S = \frac{R}{p} (1+i)^{1/p} \frac{(1+i)^n - 1}{(1+i)^{1/p} - 1}$	$A = \frac{R}{p} (1+i)^{1/p} \frac{1 - (1+i)^{-n}}{(1+i)^{1/p} - 1}$

Срочная рента с начислением процентов т раз в году

Вид ренты	Наращенная сумма	Приведенная величина
Постну- мерандо	$S = \frac{R}{p} \frac{(1+j/m)^{m \times n} - 1}{(1+j/m)^{m/p} - 1}$	$A = \frac{R}{p} \frac{1 - (1 + j/m)^{-m \times n}}{(1 + j/m)^{m/p} - 1}$
Прену- мерандо	$S = \frac{R}{p} (1 + j/m)^{m/p} \frac{(1 + j/m)^{n} - 1}{(1 + j/m)^{m/p} - 1}$	$A = \frac{R}{p} (1 + j/m)^{m/p} \frac{(1 + j/m)^{-m \times n} - 1}{1 - (1 + j/m)^{m/p}}$

Ренты с непрерывным начислением процентов

Вид ренты	Наращенная сумма	Современная стоимость				
постнумерандо	$S = R \frac{e^{\delta n} - 1}{e^{\delta} - 1}$	$A = R \frac{1 - e^{-\delta n}}{e^{\delta} - 1}$				
пренумерандо	$S = R \times e^{\delta} \frac{e^{\delta n} - 1}{e^{\delta} - 1}$	$A = R \times e^{\delta} \frac{1 - e^{-\delta n}}{e^{\delta} - 1}$				

Определение члена ренты (R) по заданному значению:

Вид ренты	Наращенной суммы	Современной стоимости			
постнумерандо	$R = S/s_{n,i}$	$R = A/a_{n,i}$			
пренумерандо	$R = S/s_{n,i}^*$	$R = A/a_{n,i}^*$			

Определение срока ренты по заданному значению:

Вид ренты	Наращенной суммы	Современной стоимости			
постнумерандо	$n = \frac{\ln(S \times i / R + 1)}{\ln(1 + i)}$	$n = \frac{-\ln(1 - \frac{P}{R}i)}{\ln(1+i)}$			
пренумерандо	$n = \frac{\ln(S \times i / (R \times (1+i)) + 1)}{\ln(1+i)}$	$n = \frac{-\ln(1 - \frac{P \times i}{R \times (1+i)})}{\ln(1+i)}$			

Ренты с начислением простых процентов

Вид ренты	Наращенная сумма	Приведенная величина
постнумерандо	$S = R \frac{2 + i(n-1)}{2} \times n$	$A = R \frac{2 + i(n-1)}{2} \times (1 + n \times i)^{-1} \times n$
пренумерандо	$S = R \frac{2 + i(n+1)}{2} \times n.$	$A = R \frac{2 + i(n+1)}{2} \times (1 + i \times n)^{-1} \times n$

Смешанные ренты

Смешанный метод начисления процентов: в течение года на вносимые платежи начисляются простые проценты, а за целые годовые периоды — сложные проценты:

– расчет наращенной суммы в пределах года для ренты постнумерандо:

$$S_{rog} = \frac{R}{p} \left[p + \frac{n-1}{2} i \right],$$

- величина $S_{\text{год}}$ является членом годовой ренты, выплачиваемой в течении п лет:

$$S = S_{200} \times \frac{(1+i)^n - 1}{i}.$$

Ренты с платежами в середине периодов

$$S_c = S(1+i)^{0.5} = R \times s_{n,i} (1+i)^{0.5},$$

где S – наращенная стоимость обычной годовой ренты.

$$S_c = S(1+j/m)^{0.5m}$$
 (при $p=1, m \neq 1$);

$$S_c = S(1 + j/m)^{m/2p}$$
 (при $m \neq 1, p \neq 1$);

$$S_c = S \times e^{\delta/2}.$$

Преобразование ренты

а) $n_0 = n_1, \ R_0 \neq R_1$ – изменены срок и размер рентного платежа:

$$R_{0}a_{n_{0},i}^{*} = R_{1}a_{n_{1},i}^{*} \Longrightarrow$$

$$R_{1} = R_{0} \times \frac{a_{n_{0},i}^{*}}{a_{n_{1},i}^{*}} = R_{0} \times \frac{1 - (1+i)^{-n_{0}}}{1 - (1+i)^{-n_{1}}}$$

б) $p_0 \neq p_1 - u$ зменение срочности ренты:

$$R_0 \times a_{n,i}^{(p_0)^*} = R_1 \times a_{n,i}^{(p_1)^*}$$

$$\begin{split} R_1 &= R_0 \frac{{a_{n,i}^{(p_0)}}^*}{{a_{n,i}^{p_1}}^*} = R_0 \frac{1 - (1+i)^{-n}}{p_0 \left[(1+i)^{1/p_0} - 1 \right]} : \frac{1 - (1+i)^{-n}}{p_1 \left[(1+i)^{1/p_1} - 1 \right]} = \\ &= R_0 \frac{p_1 \left[(1+i)^{1/p_1} - 1 \right]}{p_0 \left[(1+i)^{1/p_0} - 1 \right]}. \end{split}$$

в) $p_0 = 1, p_1 -$ замена годовой ренты на срочную:

$$R_1 = R_0 \frac{p_1 [(1+i)^{1/p_1} - 1]}{i}.$$

г) при замене нескольких параметров ренты:

$$S_0 = \frac{R_0}{p_0} \frac{1 - (1 + j_0/m_0)^{-m_0 \times n_0}}{(1 + j_0/m_0^{m_0/p_0} - 1)}.$$

Т. к. современные стоимости равны, т. е.

$$S_0 = S_1$$
, тогда

$$R_1 = S_0 : \frac{1 - (1 + j_1/m_1)^{-m_1 \times n_1}}{(1 + j_1/m_1)^{m_1/p_1} - 1)}.$$

Задачи для самостоятельного решения

- **4.1.** На депозитный счет в течение 3 лет ежегодно вносятся в конце каждого года 1 млн. руб., на которые начисляются сложные проценты по ставке 36% годовых. Определите сумму процентов, которую банк выплатит владельцу счета.
- **4.2.** Определите размер ежегодного взноса, вносимого в конце каждого года для погашения в течение 4 лет долга, равного 100 млн. руб., если на взносы начисляются сложные проценты по ставке 30% годовых.
- **4.3.** Платежи размером 1 млн. руб. вносятся в начале каждого года в течение 5 лет при сложной процентной ставке 32% годовых. Определите итоговую сумму взносов.
- **4.4.** Платежи в фонд вносятся ежегодно по 2 млн. руб. в течение 3 лет с начислением сложных процентов по ставке 32% годовых. Определите современную величину ренты.
- **4.5.** Для создания фонда ежегодно выделяется 1 млн. руб. На эти средства начисляются сложные проценты по годовой ставке 30%. Определите сумму средств фонда через 3 года, если поступление взноса в начале года, а начисление процентов ежемесячное.
- **4.6.** Для создания фонда ежегодно выделяется 1 млн. руб. На эти средства начисляются сложные проценты по годовой ставке 30%. Определите сумму средств фонда через 3 года, если поступление взноса в конце года, а начисление процентов по полугодиям.
- **4.7.** Для создания фонда ежегодно выделяется 10 млн. руб. На эти средства начисляются сложные проценты по годовой ставке 30%. Определите сумму средств фонда через 3 года, если поступление взносов по полугодиям, а начисление процентов поквартальное.
- **4.8.** Для создания фонда ежегодно выделяется 8 млн. руб. На эти средства начисляются сложные проценты по годовой ставке 32%. Определите сумму средств фонда через

3 года, если поступление взноса и начисление процентов ежемесячные.

- **4.9.** Платежи размером 500 тыс. руб. выплачиваются в конце каждого полугодия при сложной процентной ставке 10% годовых в течение 1 года. Определить наращенную сумму и современную величину ренты.
- **4.10.** Сумма долга равна 100 млн. руб. Предполагается, что выплачивается долг ежегодно по 40 млн. руб. Определите срок выплаты долга при сложной ставке процентов 28% годовых.
- **4.11.** Через 5 лет требуется накопить 200 млн. руб. Взносы будут вноситься ежегодно с начислением на них сложных процентов по ставке 36% годовых. Определить размер ежегодных взносов.
- **4.12.** Для создания фонда ежегодно выделяется 20 млн. руб. На эти средства начисляются сложные проценты по годовой ставке 30%. Определите сумму средств фонда через 3 года, если поступление взноса в конце года, а начисление процентов ежеквартальное.
- **4.13.** В фонд ежегодно вносятся суммы в размере 2,5 млн. руб., на которые начисляются сложные проценты по ставке 34% годовых. Определите сумму, накопленную в фонде через 5 лет, и сумму начисленных процентов.
- **4.14.** Определите размер ежегодных взносов в фонд предприятия, вносимых на протяжении 5 лет в конце года, если известно, что на данные взносы будут начисляться сложные проценты по ставке 32% годовых и необходимо накопить 250 млн. руб.
- **4.15.** Рентные платежи вносятся 2 раза в год по 500 тыс. руб. в течение 4 лет. Начисление простых процентов производится в конце года по ставке 28% годовых. Определить наращенную сумму ренты.
- **4.16.** Страховая компания заключила договор страхования с банком на следующих условиях: в начале каждого месяца компания вносит в банк 2 млн. руб., и на них в течение

года начисляются простые проценты по ставке 30%, а за целые годовые периоды — сложные проценты по ставке 28%. Определить накопленную за 4 года сумму.

- **4.17.** Платежи размером 750 тыс. руб. вносятся в начале каждого года в течение 4 лет при простой процентной ставке 32% годовых. Определите итоговую сумму взносов.
- **4.18.** Определите размер ежегодных взносов, вносимых в конце года при простой процентной ставке 12% годовых для создания через 5 лет фонда в размере 100 тыс. руб.
- **4.19.** На депозитный счет ежегодно в течение 5 лет вносится сумма 10 млн. руб., на которую начисляются непрерывные проценты по ставке 25%. Определите сумму процентов, которая будет выплачена владельцу счета банком.
- **4.20.** Годовая немедленная рента со сроком 5 лет и разовым платежом 2 млн. руб. меняется на ренту со сроком 10 лет. Процентная ставка 20%. Определить сумму нового разового взноса.
- **4.21.** Рента с разовым платежом 10 млн. руб., выплачиваемым дважды в год на протяжении 5 лет, заменяется рентой с разовым платежом 5 млн. руб. Определить срок новой ренты, при условии, что начисляются сложные проценты по ставке 14% годовых.
- **4.22.** Обычная годовая рента с платежом 5 млн. руб., действующая 10 лет, заменяется рентой с ежеквартальной выплатой. Определить размер платежа новой ренты, если срок ренты остается прежним, применяется сложная процентная ставка 15% годовых.
- **4.23.** По условиям контракта фирма А перечисляет ежегодно в конце года фирме Б в течении 3 лет платежи за аренду оборудования. Первый платеж равен 100 млн. руб., а каждый последующий по отношению к предыдущему увеличивается на 10% (т. е. происходит рост в 1.1 раза). Определить наращенную сумму данной переменной ренты, а также ее приведенную стоимость при условии, что процентная ставка равна 15%.

- **4.24.** Необходимо накопить 100 млн. руб. в течение 5 лет. Предполагается, что поступление денег ежегодно увеличивается на некоторую сумму при процентной ставке 15% годовых. Денежные поступления и начисление сложных процентов осуществляются в конце года. Определить, на какую величину необходимо увеличивать каждый год денежное поступление, если первый вклад будет равен 1 млн. руб.
- **4.25.** Ежемесячные платежи за оказанные услуги консультационной фирмы возрастают ежемесячно на 1,5%. Платеж за январь месяц составляет 1240 тыс. руб. Найти единовременную стоимость консультационных услуг с января по декабрь на 01 января, эквивалентную данным месячным платежам, если покупатель услуги имеет возможность получить кредит по ставке 15% годовых.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бусыгин, Ю.Н. Финансовая математика : учеб.-метод. комплекс / Ю.Н Бусыгин. Изд. 2-е. Минск: Изд-во МИУ, 2011.-188 с.
- 2. Ефимова, М.Р. Финансово-экономические расчеты: пособие для менеджеров : учеб. Пособие / М.Р. Ефимова. М.: ИНФРА-М, 2004. 184 с.
- 3. Колемаев В.А. Математическая экономика : учебник для студ. вузов / В. А. Колемаев. М.: ЮНИТИ, 1998. 240 с.
- 4. Коптева, Н.В. Финансовая математика : учеб. пособие. / Н.В. Коптева, С.П. Семенов. Барнаул: Изд-во Алтайского госуниверситета, 2003. 76 с.
- 5. Кочетыгов, А.А. Финансовая математика. Серия «Учебники, учебные пособия» / А.А. Кочетыгов. Ростов н/Д: Изд-во «Феникс», 2004. 480 с.
- 6. Кочович, Е. Финансовая математика с задачами и решениями : учеб.-метод. пособие / Е. Кочович. 2-е изд., перераб. и доп. М.: Финансы и статистика, 2004. 380 с.
- 7. Кочович, Е. Финансовая математика: теория и практика финансово-банковских расчетов / Е. Кочович, Е.М Четыркина. М.: Финансы и статистика, 1994. 268 с.
- 8. Кузнецов, Б.Т. Финансовая математика : Учеб. пособие для вузов / Б.Т. Кузнецов. М.: Изд-во «Экзамен», 2005. $128~\rm c$.
- 9. Овчаренко, Е.К. Финансово-экономические расчеты в EXCEL / Е.К. Овчаренко, О.П. Ильина, Е.В. Балыбердин. М.: Филинъ, 1997. 148 с.
- 10. Четыркин, Е.М. Методы финансовых и коммерческих расчетов / Е.М. Четыркин. М.: «Дело», «BusinessPe4b», 1992. 320 с.

ПРИЛОЖЕНИЕ 1 Порядковые номера дней в обычном году (365 дней)

День месяца	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь
1	1	32	60	91	121	152	182	213	244	274	305	335
2	2	33	61	92	122	153	183	214	245	275	306	336
3	3	34	62	93	123	154	184	215	246	276	307	337
4	4	35	63	94	124	155	185	216	247	277	308	338
5	5	36	64	95	125	156	186	217	248	278	309	339
6	6	37	65	96	126	157	187	218	249	279	310	340
7	7	38	66	97	127	158	188	219	250	280	311	341
8	8	39	67	98	128	159	189	220	251	281	312	342
9	9	40	68	99	129	160	190	221	252	282	313	343
10	10	41	69	100	130	161	191	222	253	283	314	344
11	11	42	70	101	131	162	192	223	254	284	315	345
12	12	43	71	102	132	163	193	224	255	285	316	346
13	13	44	72	103	133	164	194	225	256	286	317	347
14	14	45	73	104	134	165	195	226	257	287	318	348
15	15	46	74	105	135	166	196	227	258	288	319	349
16	16	47	75	106	136	167	197	228	259	289	320	350
17	17	48	76	107	137	168	198	229	260	290	321	351
18	18	49	77	108	138	169	199	230	261	291	322	352
19	19	50	78	109	139	170	200	231	262	292	323	353
20	20	51	79	110	140	171	201	232	263	293	324	354
21	21	52	80	111	141	172	202	233	264	294	325	355
22	22	53	81	112	142	173	203	234	265	295	326	356
23	23	54	82	113	143	174	204	235	266	296	327	357
24	24	55	83	114	144	175	205	236	267	297	328	358
25	25	56	84	115	145	176	206	237	268	298	329	359
26	26	57	85	116	146	177	207	238	269	299	330	360
27	27	58	86	117	147	178	208	239	270	300	331	361
28	28	59	87	118	148	179	209	240	271	301	332	362
29	29	_	88	119	149	180	210	241	272	302	333	363
30	30	_	89	120	150	181	211	242	273	303	334	364
31	31	1	90	_	151	-	212	243		304		365

ПРИЛОЖЕНИЕ 2 Порядковые номера дней в високосном году (366 дней)

День месяца	Январь	Февраль	Март	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Ноябрь	Декабрь
1	1	32	61	92	122	153	183	214	245	275	306	336
2	2	33	62	93	123	154	184	215	246	276	307	337
3	3	34	63	94	124	155	185	216	247	277	308	338
4	4	35	64	95	125	156	186	217	248	278	309	339
5	5	36	65	96	126	157	187	218	249	279	310	340
6	6	37	66	97	127	158	188	219	250	280	311	341
7	7	38	67	98	128	159	189	220	251	281	312	342
8	8	39	68	99	129	160	190	221	252	282	313	343
9	9	40	69	100	130	161	191	222	253	283	314	344
10	10	41	70	101	131	162	192	223	254	284	315	345
11	11	42	71	102	132	163	193	224	255	285	316	346
12	12	43	72	103	133	164	194	225	256	286	317	347
13	13	44	73	104	134	165	195	226	257	287	318	348
14	14	45	74	105	135	166	196	227	258	288	319	349
15	15	46	75	106	136	167	197	228	259	289	320	350
16	16	47	76	107	137	168	198	229	260	290	321	351
17	17	48	77	108	138	169	199	230	261	291	322	352
18	18	49	78	109	139	170	200	231	262	292	323	353
19	19	50	79	110	140	171	201	232	263	293	324	354
20	20	51	80	111	141	172	202	233	264	294	325	355
21	21	52	81	112	142	173	203	234	265	295	326	356
22	22	53	82	113	143	174	204	235	266	296	327	357
23	23	54	83	114	144	175	205	236	267	297	328	358
24	24	55	84	115	145	176	206	237	268	298	329	359
25	25	56	85	116	146	177	207	238	269	299	330	360
26	26	57	86	117	147	178	208	239	270	300	331	361
27	27	58	87	118	148	179	209	240	271	301	332	362
28	28	59	88	119	149	180	210	241	272	302	333	363
29	29	60	89	120	150	181	211	242	273	303	334	364
30	30	1	90	121	151	182	212	243	274	304	335	365
31	31	_	91	_	152	_	213	244	_	305	_	366

Учебное издание

Клещева Светлана Александровна

Основы коммерческих и финансовых расчётов

Практикум

Ответственный за выпуск П.Б. Пигаль

Корректор Ю.В. Цвикевич

Подписано в печать 06.05.14 г. Формат 60х84/16. Бумага офсетная. Гарнитура «Таймс». Ризография. Усл. печ. л. 3,08. Уч.-изд. л. 1,41. Тираж 100 экз. Заказ № 543.

Отпечатано в редакционно-издательском отделе Полесского государственного университета. 225710, г. Пинск, ул. Днепровской флотилии, 23